scholarly journals Water status, cell damage and gas exchanges in West Indian cherry (Malpighia emarginata) under salt stress and nitrogen fertilization

Author(s):  
Geovani Soares de Lima ◽  
Francisco Wesley Alves Pinheiro ◽  
Adaan Sudário Dias ◽  
Hans Raj Gheyi ◽  
Saulo Soares da Silva ◽  
...  

This study was conducted to evaluate water status, cell damage and gas exchanges of West Indian cherry grown under saline water irrigation and nitrogen (N) fertilization in the post-grafting stage. The experiment was carried out in drainage lysimeters under greenhouse conditions in Regolithic Neosol with sandy loam texture. Treatments consisted of two levels of electrical conductivity of water (ECw) (0.8 and 4.5 dS m-1) and four N doses (70; 85; 100 and 115% of the N recommendation), arranged in randomized blocks, with three replicates. The dose relative to 100% corresponded to 200 g of N per plant per year. Irrigation with 4.5 dS m-1 electrical conductivity water resulted in a reduction in stomatal conductance, transpiration, CO2 assimilation rate and instantaneous carboxylation efficiency but increased cell damage percentage and internal CO2 concentration in West Indian cherry plants. Inhibition of CO2 assimilation rate in West Indian cherry plants is related to non-stomatal effects. Irrigation with 4.5 dS m-1 water and fertilization with 115% of N recommendation intensified leaf water saturation deficit in the West Indian cherry crop. The BRS Jaburu West Indian cherry was sensitive to 4.5 dS m-1 water salinity.

Author(s):  
Adaan S. Dias ◽  
Geovani S. de Lima ◽  
Francisco V. da S. Sá ◽  
Hans R. Gheyi ◽  
Lauriane A. dos A. Soares ◽  
...  

ABSTRACT The problem of the lack of adequate water resources for agriculture has intensified in recent years, making it necessary to use waters with relatively high concentration of salts for the irrigation of crops all over the world. The objective of this study was to evaluate the influence of potassium (K) fertilization as a salt stress attenuator on gas exchanges and photochemical efficiency of West Indian cherry. The crop was cultivated under greenhouse conditions in the municipality of Campina Grande, PB, in lysimeters filled with 250 kg of sandy loam soil. Treatments were distributed in randomized blocks, in a 2 x 4 factorial scheme, with two levels of electrical conductivity of irrigation water - ECw (0.8 and 3.8 dS m-1) and four K doses (50, 75, 100 and 125% of recommendation), in which the dose corresponding to 100% was equal to 19.8 g of K2O, with three replicates and one plant per repetition. Seedlings of the West Indian cherry cultivar BRS 366-Jaburu, grafted onto a locally developed rootstock from the clonal garden of the EMBRAPA Tropical Agroindustry, Pacajus, CE, were used. Irrigation with salinized water (electrical conductivity of 3.8 dS m-1) compromised the gas exchange and the photochemical efficiency of West Indian cherry plants. Potassium fertilization was not efficient at reducing the stress caused by water salinity on West Indian cherry plants.


2002 ◽  
Vol 29 (12) ◽  
pp. 1405 ◽  
Author(s):  
Anna Rita Rivelli ◽  
Stella Lovelli ◽  
Michele Perniola

The aim of this study was to determine the response of sunflower (Helianthus annuus L. cv. Romsum HS90) to salinity in terms of gas exchange, ionic and water relations, and growth. Experiments were carried out in the glasshouse, where sunflower plants were exposed to increasing salinity levels using water with a wide range of electrical conductivity (0.39–20 dS m–1) to provide different degrees of salt stress. The CO2 assimilation rate (A), stomatal conductance and plant aboveground dry weight (DW) significantly decreased as electrical conductivity of the soil increased. The decline in photosynthesis measured in response to salt stress was proportionally greater than the decline in transpiration, resulting in a reduction of water use efficiency, at both the leaf and whole-plant levels. Among the factors inhibiting photosynthetic activity, those of a non-stomatal nature had a greater effect. In particular, an analysis of photosynthetic CO2 assimilation rate vs intercellular CO2 concentration (A vs Ci curves) indicated a reduction in activity of Rubisco (EC 4.1.1.39) as salinity levels increased. Under severe salt-stress conditions, chlorophyll fluorescence showed a slowing of electron transport at the PSII level. Salt accumulation in the rhizosphere caused a reduction in tissue water status that was partly associated with a decline in osmotic potential (Ψπ). Leaf ionic concentration was clearly correlated with values of leaf Ψπ. However, leaf ionic concentration showed discontinuous distribution between younger and older leaves, reflecting a strategy of plants to preserve younger and more metabolically-active leaves from accumulating salt to toxic levels.


2013 ◽  
Vol 48 (9) ◽  
pp. 1210-1219 ◽  
Author(s):  
Muhammad Iqbal ◽  
Muhammad Ashraf

The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls) and evaluated under saline (15 dS m-1) and nonsaline (2.84 dS m-1) conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.


2006 ◽  
Vol 18 (3) ◽  
pp. 407-411 ◽  
Author(s):  
Mauro G. dos Santos ◽  
Rafael V. Ribeiro ◽  
Marcelo G. Teixeira ◽  
Ricardo F. de Oliveira ◽  
Carlos Pimentel

Two common bean cultivars were grown in pots under greenhouse conditions. Plants were submitted to a foliar Pi spray two days before suspending irrigation, what enhanced net CO2 assimilation rate of Ouro Negro cultivar but did not change significantly the photosynthesis of Carioca cultivar under both water deficit and rehydration periods. The results revealed that a foliar Pi spray induced an up-regulation of photosynthesis in common bean under mild water deficit, with this effect being genotype-dependent.


2019 ◽  
Vol 48 (4) ◽  
pp. 1215-1221
Author(s):  
Zikria Zafar ◽  
Fahad Rasheed ◽  
Muhammad Abdullah ◽  
Mir Md Abdus Salam ◽  
Muhammad Mohsin

A greenhouse experiment was conducted to investigate the effects of water deficit on growth and physiological parameters of Ficus benjamina and Conocarpus erectus. The results revealed that all growth parameters such as plant height, stem diameter, no. of leaves, no. of branches and chlorophyll contents significantly decreased under water deficit condition. Interestingly, although leaf, stem and total biomass production and allocation decreased significantly under water deficit, but root biomass production and allocation increased significantly. Similarly, stomatal conductance to water vapor decreased significantly and CO2 assimilation rate remained similar to control under water deficit condition. Resultantly, a significant increase in water use efficiency was evident in both species under water deficit condition. These results suggested that, in spite of a significant decrease in biomass production, young Conocarpus erectus and Ficus benjamina can tolerate water deficit which is due to sustained CO2 assimilation rate and increase in root biomass.


2019 ◽  
Vol 32 (2) ◽  
pp. 482-492
Author(s):  
GEOVANI SOARES DE LIMA ◽  
HANS RAJ GHEYI ◽  
REGINALDO GOMES NOBRE ◽  
LAURIANE ALMEIDA DOS ANJOS SOARES ◽  
JOÃO BATISTA DOS SANTOS

ABSTRACT Castor bean is an oilseed crop which is able to adapt to various edaphoclimatic conditions and has considerable contents of oil in its seeds, with potential for use in the castor oil industry. In this context, this study aimed to evaluate changes in membrane damage, water status and gas exchanges in castor bean plants (cv. ‘BRS Energia’) in response to irrigation water salinity and cationic composition. Randomized blocks were used to test six cationic compositions (S1 - Control; S2 - Na+; S3 - Ca2+; S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+), in four replicates. Plants in the control treatment were subjected to irrigation using water of low electrical conductivity (S1 - ECw = 0.6 dS m-1), whereas those in the other treatments were irrigated using 4.5 dS m-1 water prepared with different cations. Higher leaf succulence associated with lower water saturation deficit is an indication of tolerance to salt stress in castor bean plants irrigated with K+-rich water. The presence of Na+ in irrigation water caused the highest water saturation deficit in castor bean leaf blades. The lowest damage in cell membranes was observed in plants irrigated with Ca2+-rich water. The damaging effect of salt stress on castor bean gas exchanges depends on the cationic composition of water and occurred in the following order: Na+>Na++Ca2+>Ca2+> Na++Ca2++Mg2+>K+.


2020 ◽  
Author(s):  
Eleinis Ávila-Lovera ◽  
Héctor Blanco ◽  
Olga Móvil ◽  
Louis S Santiago ◽  
Wilmer Tezara

Abstract Shade tolerance is a widespread strategy of rainforest understory plants. Many understory species have green young stems that may assimilate CO2 and contribute to whole-plant carbon balance. Cacao commonly grows in the shaded understory and recent emphasis has been placed on diversifying the types of trees used to shade cacao plants to achieve additional ecosystem services. We studied three agricultural cacao cultivars growing in the shade of four timber species (Cedrela odorata L., Cordia thaisiana Agostini, Swietenia macrophylla King and Tabebuia rosea (Bertol) A.D.C.) in an agroforestry system to (i) evaluate the timber species for their effect on the physiological performance of three cacao cultivars; (ii) assess the role of green stems on the carbon economy of cacao; and (iii) examine coordination between stem hydraulic conductivity and stem photosynthesis in cacao. Green young stem photosynthetic CO2 assimilation rate was positive and double leaf CO2 assimilation rate, indicating a positive contribution of green stems to the carbon economy of cacao; however, green stem area is smaller than leaf area and its relative contribution is low. Timber species showed a significant effect on leaf gas exchange traits and on stomatal conductance of cacao, and stem water-use efficiency varied among cultivars. There were no significant differences in leaf-specific hydraulic conductivity among cacao cultivars, but sapwood-specific hydraulic conductivity varied significantly among cultivars and there was an interactive effect of cacao cultivar × timber species. Hydraulic efficiency was coordinated with stem-stomatal conductance, but not with leaf-stomatal conductance or any measure of photosynthesis. We conclude that different shade regimes determined by timber species and the interaction with cacao cultivar had an important effect on most of the physiological traits and growth variables of three cacao cultivars growing in an agroforestry system. Results suggested that C. odorata is the best timber species to provide partial shade for cacao cultivars in the Barlovento region in Venezuela, regardless of cultivar origin.


Sign in / Sign up

Export Citation Format

Share Document