Mitigating salt accumulation in recycled brewery effluent through the integration of water treatment, agriculture and aquaculture

2021 ◽  
Author(s):  
◽  
Nyiko Charity Mabasa

Water scarcity in South Africa, and globally, presents challenges for industries. It is imperative to develop responsible water use, such as recycling and reusing wastewater from food processing industries such as breweries. The Ibhayi Brewery (SAB Ltd) employs a combination of sustainable treatment processes that include anaerobic digestion (AD), primary facultative ponds (PFP), high rate algal ponds (HRAP) and constructed wetlands (CW) to treat brewery effluent on an experimental scale. The constituent concentrations of these experimentally treated effluents are within the ranges prescribed by local regulations to allow for potential downstream use in agriculture and aquaculture. However, the sodium content in this treated effluent, which originates from upstream cleaning agents and pH control at the onsite effluent treatment facility, is a constraint to the downstream use of brewery effluent. This study addresses the salt problem, by investigating the potential of either reducing/eliminating salt addition at source, or developing alternative techniques for downstream agriculture to mitigate the effects of salt accumulation caused by irrigation with brewery effluent. Four salt-tolerant test crops; Swiss chard (Beta vulgaris), saltbush (Atriplex nummularia), Salicornia meyeriana and sorghum (Sorghum bicolor), grew efficiently in brewery effluent irrigated soils but did not stop sodium accumulation in the growth medium. Swiss chard had the best growth with a wet biomass accumulation of 8,173 g m-2, due to the plant’s ability to tolerate saline conditions and continuous cropping. Crop rotation, to limit effects of nutrient depletion in soil, had no significant effect on plant growth suggesting soils were adequately able to provide micro-nutrients in the short-term. Prolonged irrigation with brewery effluent can lead to sodium accumulation in the soil, which was successfully controlled through the addition of soil amendments (gypsum and Trichoderma cultures). These reduced soil sodium from a potentially limiting level of 1,398 mg L-1 to the acceptable levels of 240 mg L-1 and 353 mg L-1 respectively, mainly through leaching. However only Trichoderma improved Swiss chard production to 11,238 g m-2. While crop rotation in this work did not contribute to mitigating the problem of salt accumulation, soil amended with Trichoderma appears to be a potential solution when brewery effluent is reused in agriculture. In an alternative to soil cultivation, CWs were trialled with no significant differences in the sodium concentration of brewery effluent treated along a 15 m lateral flow CW, which could be attributed to evapotranspiration. This was notably accompanied by a desirable 95.21% decrease in ammonia from inlet to outlet resulting in significant improvement in water quality for reuse in aquaculture where ammonia levels are important limiting constraints. While CWs remain a suitable brewery effluent treatment solution, this technology requires additional modelling and optimisation in order to mitigate the problem of salt accumulation in the reuse of treated brewery effluent in agriculture and aquaculture. This research demonstrates the baseline information for such modelling and optimisation. African catfish (Clarias gariepinus) grew in CW treated brewery effluent; however, this growth was moderate at 0.92% bw day-1, whereas Mozambique tilapia (Oreochromis mossambicus) were shown to be unsuited to growth in this system and lost weight with an average specific growth rate (SGR) of -0.98% bw day-1; and both fish species presenting with health related concerns. Hardy fish species such as African catfish can be cultured in brewery effluent, but with risk involved. This was a preliminary study to develop parameters for future dimensional analysis modelling to allow optimisation of the CW, based on nutrient removal rates obtained which will allow for improved downstream aquaculture by reducing or eliminating risks presented in this study. This work has also contributed to a foundation for the development of guidelines that use a risk-based approach for water use in aquaculture. Alternatives to the current in place cleaning agents were considered to mitigate the effects of salt accumulation. Sodium is introduced into the effluent via the use of sodium hydroxide and sodium chlorite for cleaning and disinfection in the brewery, as well as through effluent pH adjustment in the AD plant. The widespread use of outdated legacy cleaning systems and pH adjustment regimes is entrenched in the brewery standard operating procedures (SOP). A cost-benefit analysis (CBA) demonstrated that a change of cleaning and disinfecting regimes to hydrogen peroxide in the brewery, and magnesium hydroxide pH adjustment in the effluent treatment plant addresses the sodium issue upstream in the brewery practically eliminating sodium from the effluent. In addition, a life cycle analysis (LCA) was carried out to assess the environmental impacts associated with the alternative cleaning and pH adjustment scenarios. The LCA showed that electricity consumption during use phase of the chemicals for respective purposes, as well as their production activities were major contributors to the significant environmental impact categories that were assessed. The cleaning scenario employing the use of hydrogen peroxide for both cleaning and disinfection was found to be the most environmentally sustainable. This was attributed to the reduced number of chemicals used compared to the other cleaning scenarios. Dolomitic lime was the pH adjustment alternative with the lowest average environmental impact; but, however, had a higher impact on freshwater eutrophication which is of major concern if the effluent will be reused for irrigation. Magnesium hydroxide was therefore considered to be the better option as a sodium hydroxide alternative for pH adjustment. This mitigates salt accumulation, making treated brewery effluent suitable for reuse in high value downstream agriculture and aquaculture, while employing more environmentally sustainable technologies. Notably, this converts brewery effluent from a financial liability to Ibhayi Brewery, into a product containing water and nutrients that generate income, improve food security, and can create employment in downstream agriculture and aquaculture in a sustainable manner.

Foods ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 134 ◽  
Author(s):  
Ievgeniia Ostrov ◽  
Tali Paz ◽  
Moshe Shemesh

One of the main strategies for maintaining the optimal hygiene level in dairy processing facilities is regular cleaning and disinfection, which is incorporated in the cleaning-in-place (CIP) regimes. However, a frail point of the CIP procedures is their variable efficiency in eliminating biofilm bacteria. In the present study, we evaluated the susceptibility of strong biofilm-forming dairy Bacillus isolates to industrial cleaning procedures using two differently designed model systems. According to our results, the dairy-associated Bacillus isolates demonstrate a higher resistance to CIP procedures, compared to the non-dairy strain of B. subtilis. Notably, the tested dairy isolates are highly persistent to different parameters of the CIP operations, including the turbulent flow of liquid (up to 1 log), as well as the cleaning and disinfecting effects of commercial detergents (up to 2.3 log). Moreover, our observations indicate an enhanced resistance of poly-γ-glutamic acid (PGA)-overproducing B. subtilis, which produces high amounts of proteinaceous extracellular matrix, to the CIP procedures (about 0.7 log, compared to the wild-type non-dairy strain of B. subtilis). We therefore suggest that the enhanced resistance to the CIP procedures by the dairy Bacillus isolates can be attributed to robust biofilm formation. In addition, this study underlines the importance of evaluating the efficiency of commercial cleaning agents in relation to strong biofilm-forming bacteria, which are relevant to industrial conditions. Consequently, we believe that the findings of this study can facilitate the assessment and refining of the industrial CIP procedures.


2016 ◽  
Vol 64 (4) ◽  
pp. 277 ◽  
Author(s):  
Akihiro Yamamoto ◽  
Masatsugu Hashiguchi ◽  
Ryo Akune ◽  
Takahito Masumoto ◽  
Melody Muguerza ◽  
...  

Several zoysiagrasses (Zoysia spp.) have been reported to have leaf-epidermal salt glands, and it has been suggested that salt gland density, salt secretion and salt tolerance are positively correlated. The economically most important Zoysia species are Zoysia japonica Steud., Zoysia matrella Merr., and Zoysia pacifica (Goudswaard) M. Hotta & Kuroki, and among these, Z. matrella is considered to be the most salt-tolerant. In this study, we investigated the salt gland density, and characterised the secretion and accumulation of Na+ of 48 accessions of the three Zoysia species. We did not find any morphological differences in salt glands of Z. japonica and Z. pacifica, but large bicellular salt glands were found only on the adaxial side of Z. matrella. In addition, salt gland density differed significantly within and between the species. Under salt stress, all accessions accumulated and secreted Na+ at different rates. Z. japonica was a salt-accumulating type, whereas Z. matrella and Z. pacifica secreted most of the absorbed salt. However, the correlation between salt gland density and salt accumulation/secretion were not observed. Furthermore, Z. pacifica had the lowest gland density but showed the highest Na+ uptake and a secretion rate similar to most salt-tolerant Z. matrella. These results suggest that response to salt stress, namely, salt accumulation/secretion, is different between species, and that salt gland density and salt secretion are not always positively correlated.


2010 ◽  
Vol 116 (3) ◽  
pp. 285-292 ◽  
Author(s):  
M. Filomena de J. Raposo ◽  
Susana E. Oliveira ◽  
Paula M. Castro ◽  
Narcisa M. Bandarra ◽  
Rui M. Morais

Author(s):  
Richard P. Taylor ◽  
Clifford L. W. Jones ◽  
Mark Laing

Abstract The use of a crop to remove nutrients from brewery effluent and the influence of pH on these removal rates was evaluated. Cabbage (Brassica oleracea) was grown in recirculating hydroponic systems fed with post-anaerobically digested brewery effluent (BE) either subject to pH adjustment (6.5–7.0) or unaltered pH (8.0–8.5). These were compared with cabbages grown in water only and in a inorganic fertiliser nutrient solution (NS). Hydroponic systems fed with pH adjusted BE removed significantly more nitrogen and phosphorus than systems fed with pH unadjusted BE (p < 0.05). The final weight of cabbages from the pH adjusted BE systems were 6.7 times greater than cabbages from the pH unadjusted BE systems, whereas pH adjustment had no influence on cabbage weight in the water-only and NS treatments. Anaerobically digested BE that is not pH adjusted is not a suitable water and nutrient source for the hydroponic production of cabbages. However, pH adjustment of BE renders it more suitable for hydroponic crop production with hydroponic systems decreasing dissolved inorganic nitrogen, ammonium, phosphate and chemical oxygen demand concentrations by 72.8, 31.8, 98.5 and 51.0%, respectively. Hydroponic systems can be used to treat post-anaerobically digested BE to a similar standard obtained by conventional activated sludge treatment system.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 117 ◽  
Author(s):  
Nor Munirah Bt Abdullah ◽  
Nur Sabiha binti Mohd Aluwi ◽  
Heekyung Park ◽  
Norashikin Binti Ahmad Kamal

This lab scale study aims to investigate the effect of different concentration of waste lubricating oil on the African catfish juveniles, Clarias gariepinus. Five different concentrations of waste lubricating oil were used for 96 hours period which are 0 ml/L, 5 ml/L, 10 ml/l, 15 ml/l, and 20 ml/L. After 96 hours of experiment, tank 4 which being added with 20 mL waste lubricating oil shows the highest percentage of fish mortality (100%) followed by tank 3 (95%), and tank 2 (76%) while the lowest percentage of mortality is recorded in tank 1 (19%). The result from the toxicity test showed that the higher the concentration of waste lubricating oil, the higher the mortality rate of fish.  The lethal concentration LC50 that caused 50% mortality of test fish was estimated at 8.1 ml/L. From the observation, waste lubricating oil which contains heavy metals had cause damage to renal and nervous system of fishes thus causing them to lost equilibrium and irregular vertical swimming that will finally cause death. It can be concluded that the harmful environment that will trigger death of fish will be created by indiscriminate discharge of waste oil into water bodies. Therefore, it is recommended to treat the wastewaters, sewage and industrial wastes before it is being discharged into the aquatic ecosystems to sustain the aquatic species for the future.  The proper effluent treatment technology should be adopted to check the present of oil spillage in the water. The enforcement of laws and legislations related to the protection of aquatic environment must be enhance and take into considerations. 


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 792 ◽  
Author(s):  
Annette Fagerlund ◽  
Even Heir ◽  
Trond Møretrø ◽  
Solveig Langsrud

Effective cleaning and disinfection (C&D) is pivotal for the control of Listeria monocytogenes in food processing environments. Bacteria in biofilms are protected from biocidal action, and effective strategies for the prevention and removal of biofilms are needed. In this study, different C&D biofilm control strategies on pre-formed L. monocytogenes biofilms on a conveyor belt material were evaluated and compared to the effect of a conventional chlorinated, alkaline cleaner (agent A). Bacterial reductions up to 1.8 log were obtained in biofilms exposed to daily C&D cycles with normal user concentrations of alkaline, acidic, or enzymatic cleaning agents, followed by disinfection using peracetic acid. No significant differences in bactericidal effects between the treatments were observed. Seven-day-old biofilms were more tolerant to C&D than four-day-old biofilms. Attempts to optimize biofilm eradication protocols for four alkaline, two acidic, and one enzymatic cleaning agent, in accordance with the manufacturers’ recommendations, were evaluated. Increased concentrations, the number of subsequent treatments, the exposure times, and the temperatures of the C&D agents provided between 4.0 and >5.5 log reductions in colony forming units (CFU) for seven-day-old L. monocytogenes biofilms. Enhanced protocols of conventional and enzymatic C&D protocols have the potential for improved biofilm control, although further optimizations and evaluations are needed.


2019 ◽  
Vol 27 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Hardeep Singh ◽  
Bruce Dunn ◽  
Mark Payton

Abstract Use of hydroponics is increasing because of its ability to be used for year round vegetable production using an environmentally sustainable system. Management of solution pH is an important challenge in hydroponics systems. Our objective was to quantify the effects of various pH modifiers on growth and nutrient uptake of leafy greens and stability of nutrient solution’s pH. Lettuce, basil, and Swiss chard were transplanted into an Ebb and flow system, and nutrient solution pH was maintained using three different pH modifiers (pH Down, lime juice, or vinegar). The nutrient solution’s pH was maintained between 5.5 and 6.5. pH Down resulted in the most stable solution pH and required the least amount of product used when compared to lime juice and vinegar. The cost of using phosphoric acid or lime juice was greater than that of using vinegar. Vinegar reduced the yield of all crops in comparison to pH Down. When compared to pH Down, lime juice reduced the yield of basil and Swiss chard but not that of lettuce. Therefore, growers can use lime juice as an alternative to pH Down in lettuce production but not for basil and Swiss chard, while vinegar would not be recommended for any of the crops studied.


2017 ◽  
Vol 4 (11) ◽  
pp. 11660-11670
Author(s):  
Ashwanth Subramanian ◽  
Madhav Bhutada ◽  
Keshav Bhutada ◽  
A.R. Phani ◽  
R. Suresh ◽  
...  

2012 ◽  
Vol 107 ◽  
pp. 151-158 ◽  
Author(s):  
Teresa M. Mata ◽  
Ana C. Melo ◽  
Manuel Simões ◽  
Nídia S. Caetano

Sign in / Sign up

Export Citation Format

Share Document