scholarly journals New diagnostic and therapeutic options in canine osteoarthritis

2020 ◽  
Vol 76 (08) ◽  
pp. 6372-2020
Author(s):  
ALEKSANDRA WYPYCH ◽  
JOANNA SZCZEPANEK ◽  
GRZEGORZ WĄSIATYCZ ◽  
CHANDRA SH. PAREEK ◽  
ANDRZEJ TRETYN ◽  
...  

Osteoarthritis (OA) is a degenerative disease of the joints, characterized by irreversible destruction of articular cartilage. The disease process is accompanied by changes of immunological nature, resulting in local inflammatory reactions, with the production of proinflammatory cytokines and metalloproteinases. There is currently no effective treatment resulting in repair of degraded cartilage. Clinical application of mesenchymal cells (MSCs) creates new possibilities in the treatment of incurable diseases. Multipotent MSCs exhibit immunosuppressive activity and limited immunogenicity and have the potential to differentiate in vitro towards adipocytes, osteocytes, chondrocytes, myocytes and endothelial cells. Thanks to these biological properties, they are increasingly used in clinical therapies. In few scientific papers, the safety of cellular therapies in the group of dogs diagnosed with OA has been confirmed. In patients undergoing treatment with autologous intra-articular injections, no serious adverse effects were observed, and in the vast majority of patients an improvement in the clinical condition and reduction of pain and joint pain were achieved. The paper presents the current state of knowledge on osteoarthritis in dogs, on the biological properties of adipose tissue stem cells and their use in OA therapy and on monitoring the progress of treatment by imaging diagnostics.

2019 ◽  
Author(s):  
Riccardo Wysoczanski ◽  
Alexandra C Kendall ◽  
Madhur Motwani ◽  
Roser Vega ◽  
Farooq Z Rahman ◽  
...  

AbstractThe cause of chronic inflammation in ulcerative colitis (UC) is incompletely understood. Here we tested the hypothesis that an excessive acute inflammatory response to bacteria contributes to the pathogenesis. Acute inflammatory responses were provoked in vivo in UC patients and healthy controls by intradermal inoculation with bacteria. Vascular responses were quantified by laser Doppler. Inflammatory exudates were recovered in superimposed suction blisters and cells measured by polychromatic flow cytometry, cytokines by multiplex array, and inflammatory lipids by mass spectrometry. Vascular responses in UC patients were heightened at 24h after bacterial injection (p=0·03), and remained abnormally high at 48h (p=0·0005) and this amplified response was seen in UC with Gram-positive as well as Gram-negative organisms (p=0·01). The cellular infiltrate over the injection site, composed largely of neutrophils at 4 hours a was greater in UC (p=0·002). At 48h, the increased numbers of cells in UC were composed of neutrophils (p=0·001) and CD4 lymphocytes (p=0·001). The exaggerated inflammation in UC was not a cytokine-driven phenomenon. Exaggerated onset was normalised in patients taking 5-aminosalicylates, accompanied by increased concentrations of hydroxy fatty acids 9-oxo-octadecadienoic acid (OxoODE; p=0·05) and 13-OxoODE (p=0·01) in resolving exudates. In vitro, these compounds suppressed macrophage inflammatory cytokine secretion through PPARγ (p<0·0001). Conversely, 5-aminosalicylates did not inhibit early inflammatory reactions in control participants. Acute inflammatory responses to bacteria in UC are both overly exuberant and slow to resolve. Neutrophils accumulate in excess and persist, in keeping with the pathological appearances of disease flares. These studies also provide new insight into the mechanism of 5-aminosalicylate (5ASA) drugs, which act as pro-resolution rather than indiscriminate anti-inflammatory agents by promoting formation of immunomodulatory hydroxy lipids. While production of these lipids is not defective as part of the underlying disease process, this identifies a novel mechanism of drug action harnessing pro-resolution pathways.SummaryWysoczanski and colleagues demonstrate that the inflammatory response to injected bacteria is exaggerated and prolonged in ulcerative colitis. This disordered inflammation appears to be associated with increased secretion of PGE2. 5-aminosalicylate drugs, which are used to treat this condition, normalize inflammation and PGE2 secretion, and appear to work through PPARγ


2018 ◽  
Vol 69 (6) ◽  
pp. 1416-1418
Author(s):  
Alexandru Szabo ◽  
Ilare Bordeasu ◽  
Ion Dragos Utu ◽  
Ion Mitelea

Hydroxyapatite (HA) is a very common material used for biomedical applications. Usually, in order to improve its poor mechanical properties is combined or coated with other high-strength materials.The present paper reports the manufacturing and the biocompatibility behaviour of two different biocomposite coatings consisting of alumina (Al2O3) and hydroxyapatite (HA) using the high velocity oxygen fuel (HVOF) spraying method which were deposited onto the surface of a commercially pure titanium substrate. The biological properties of the Al2O3-HA materials were evaluated by in vitro studies. The morphology of the coatings before and after their immersing in the simulated body fluid (SBF) solution was characterized by scanning electron microscopy (SEM). The results showed an important germination of the biologic hydroxyapatite crystallite on the surface of both coatings.


2019 ◽  
Vol 25 (37) ◽  
pp. 4837-4853 ◽  
Author(s):  
Agata Jarząb ◽  
Wirginia Kukula-Koch

Background: Obesity in the 21st century society became an important health problem, alarming both the scientists and medicine doctors around the world. That is why, the search for new drug candidates capable to reduce the body weight is of high concern. Objective: This contribution tends to collect current findings on the biochemistry of obesity and on the application of plants and in particular turmeric tuber – a commonly used spice - as an anti-obesity agent. Methods: Following an introduction on the biochemical characteristics of obesity, the description of Curcuma secondary metabolites, their pharmacological applications and a study on the plants’ regulatory properties in obesity was summarized. Particular attention was paid to curcumin – the major metabolite present in the extracts of Curcuma spp., which is known to exhibit a variety of pharmacological actions. Also, the characteristics of some semisynthetic analogues of this ferulic acid derivative, characterized by a higher polarity and better bioavailability will be discussed. Results: Numerous scientific papers treat on the influence of turmeric on weight loss. Additionally, some of them describe its anti-inflammatory properties. Conclusions: This important spice tends to fight the 21st century plague, which is an excessive weight gain, related to the development of metabolic syndrome, to the occurrence of cardiovascular problems and diabetes, and, in consequence, leading to a significant shortening of life span. As herein proven, the extracts of turmeric play an important role in the regulation of inflammatory reactions which are evoked in the overweight patients, helping them reduce the excess body weight.


2020 ◽  
Vol 28 ◽  
Author(s):  
Justyna Hajtuch ◽  
Karolina Niska ◽  
Iwona Inkielewicz-Stepniak

Background: Cancer along with cardiovascular diseases are globally defined as leading causes of death. Importantly, some risk factors are common to these diseases. The process of angiogenesis and platelets aggregation are observed in cancer development and progression. In recent years, studies have been conducted on nanodrugs in these diseases that have provided important information on the biological and physicochemical properties of nanoparticles. Their attractive features are that they are made of biocompatible, well-characterized and easily functionalized materials. Unlike conventional drug delivery, sustained and controlled drug release can be obtained by using nanomaterials. Methods: In this article, we review the latest research to provide comprehensive information on nanoparticle-based drugs for the treatment of cancer, cardiovascular disease associated with abnormal haemostasis, and the inhibition of tumorassociated angiogenesis. Results: The results of the analysis of data based on nanoparticles with drugs confirm their improved pharmaceutical and biological properties, which gives promising antiplatelet, anticoagulant and antiangiogenic effects. Moreover, the review included in vitro, in vivo research and presented nanodrugs with chemotherapeutics approved by Food and Drug Administration. Conclusion: By the optimization of nanoparticles size and surface properties, nanotechnology are able to deliver drugs with enhanced bioavailability in treatment of cardiovascular disease, cancer and inhibition of cancer-related angiogenesis. Thus, nanotechnology can improve the therapeutic efficacy of the drug, but there is a need for a better understanding of the nanodrugs interaction in the human body, because this is a key factor in the success of potential nanotherapeutics.


2018 ◽  
Vol 19 (4) ◽  
pp. 310-326 ◽  
Author(s):  
Elnaz Gozalpour ◽  
Katherine S. Fenner
Keyword(s):  

2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2020 ◽  
Vol 16 (1) ◽  
pp. 65-74
Author(s):  
Ortensia Ilaria Parisi ◽  
Mariarosa Ruffo ◽  
Fabio Amone ◽  
Rocco Malivindi ◽  
Domenico Gorgoglione ◽  
...  

Background: The Rotonda’s Red Eggplant belongs to the family of Solanum aethiopicum and it is cultivated in a specific area of Potenza (Basilicata, South of Italy) including villages of Rotonda, Viggianello, Castelluccio Superiore and Castelluccio Inferiore. The Red Eggplant cultivated in this area has gained the PDO, “Protected Designation of Origin”. Objective: The aim of this research was to evaluate the use of PDO Rotonda’s Red Eggplant extract as a possible nutraceutical supplement. The antioxidant, antihypertensive, hypoglycemic, and hypolipidemic properties were in vitro evaluated. Methods: The antioxidant activity was investigated by evaluating the scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and by performing the Ammonium Molybdate and Folin-Ciocalteu assay. The hypoglycemic and antihypertensive activity was studied by evaluating the α-Amylase, α-Glucosidase and Angiotensin Converting Enzyme, respectively, inhibiting activity. In order to evaluate the hypolipidemic activity, the pancreatic lipase inhibiting property was determined and Oil Red O staining assay was performed. Finally, to evaluate the possible use of this extract as a minerals supplement, Selenium, Potassium and Chrome bioaccessibility was studied. Results: The obtained results underline the good antioxidant, hypoglycemic, antihypertensive and hypolipidemic in vitro properties of the PDO Rotonda’s Red Eggplant extract. Moreover, the obtained data show a higher minerals bioaccessibility and this higher value could be ascribable to the natural phytocomplex of PDO Rotonda’s Red Eggplant, which increases the minerals bioaccessibility if compare it with a control sample. Conclusion: The obtained results show that PDO Rotonda’s Red Eggplant extract, might be used as a possible nutraceutical supplement, along with traditional therapies, both for its biological properties and for its minerals bioaccessibility value.


2019 ◽  
Vol 15 (4) ◽  
pp. 373-382 ◽  
Author(s):  
Ralph C. Gomes ◽  
Renata P. Sakata ◽  
Wanda P. Almeida ◽  
Fernando Coelho

Background: The most important cause of dementia affecting elderly people is the Alzheimer’s disease (AD). Patients affected by this progressive and neurodegenerative disease have severe memory and cognitive function impairments. Some medicines used for treating this disease in the early stages are based on inhibition of acetylcholinesterase. Population aging should contribute to increase the cases of patients suffering from Alzheimer's disease, thus requiring the development of new therapeutic entities for the treatment of this disease. Methods: The objective of this work is to identify new substances that have spatial structural similarity with donepezil, an efficient commercial drug used for the treatment of Alzheimer's disease, and to evaluate the capacity of inhibition of these new substances against the enzyme acetylcholinesterase. Results: Based on a previous results of our group, we prepared a set of 11 spirocyclohexadienones with different substitutions patterns in three steps and overall yield of up to 59%. These compounds were evaluated in vitro against acetylcholinesterase. We found that eight of them are able to inhibit the acetylcholinesterase activity, with IC50 values ranging from 0.12 to 12.67 µM. Molecular docking study indicated that the spirocyclohexadienone, 9e (IC50 = 0.12 µM), a mixedtype AChE inhibitor, showed a good interaction at active site of the enzyme, including the cationic (CAS) and the peripheral site (PAS). Conclusion: We described the first study aimed at investigating the biological properties of spirocyclohexadienones as acetylcholinesterase inhibitors. Thus, we have identified an inhibitor, which provided valuable insights for further studies aimed at the discovery of more potent acetylcholinesterase inhibitors.


2016 ◽  
Vol 16 (9) ◽  
pp. 1172-1183 ◽  
Author(s):  
Lamia Benguedouar ◽  
Mesbah Lahouel ◽  
Sophie C. Gangloff ◽  
Anne Durlach ◽  
Florent Grange ◽  
...  

Melanoma is the more dangerous skin cancer, and metastatic melanoma still carries poor prognosis. Despite recent therapeutic advances, prolonged survival remains rare and research is still required. Propolis extracts from many countries have attracted a great deal of attention for their biological properties. We here investigated the ability of an ethanolic extract of Algerian propolis (EEP) to control melanoma tumour growth when given to mice bearing B16F1melanoma tumour either as preventive or as therapeutic treatment. EEP given after tumour occurrence increased mice survival (+30%) and reduced tumour growth (-75%). This was associated with a decrease of the Mitotic Index (-75%) and of Ki-67 (-50%) expression. When given either before or both before and after tumour occurrence, EEP reduced tumour growth but without prolonging mice life. Isolation of B16F1 melanoma cells from resected tumour showed that preventive and curative EEP treatments reduced invasiveness by 55% and 40% respectively compared to control. Galangin, one of the most abundant flavonoids in propolis, significantly reduced the number of melanoma cells in vitro and induced autophagy/apoptosis dose dependently. In conclusion, we showed that EEP reduced melanoma tumour progression/dissemination and could extend mice lifespan when used as therapeutic treatment. Then, EEP may help patients with melanoma when used as a complementary therapy to classical treatment for which autophagy is not contraindicated.


Inorganics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 128 ◽  
Author(s):  
Giglio ◽  
Rey

Technetium-99m has a rich coordination chemistry that offers many possibilities in terms of oxidation states and donor atom sets. Modifications in the structure of the technetium complexes could be very useful for fine tuning the physicochemical and biological properties of potential 99mTc radiopharmaceuticals. However, systematic study of the influence of the labelling strategy on the “in vitro” and “in vivo” behaviour is necessary for a rational design of radiopharmaceuticals. Herein we present a review of the influence of the Tc complexes’ molecular structure on the biodistribution and the interaction with the biological target of potential nitroimidazolic hypoxia imaging radiopharmaceuticals presented in the literature from 2010 to the present. Comparison with the gold standard [18F]Fluoromisonidazole (FMISO) is also presented.


Sign in / Sign up

Export Citation Format

Share Document