scholarly journals Heavy Metals and Chemical Composition of Mullet Fish and Water Quality of Its Farms

2012 ◽  
Vol 42 (1) ◽  
pp. 63-81 ◽  
Author(s):  
Neveen Agamy ◽  
Ahmed Gomaa
2021 ◽  
Vol 7 (6) ◽  
Author(s):  
K. Allahverdiyeva

The article is devoted to the issue of assessing the water quality of the qanats operating in the Ganja-Kazakh zone. It has been established that the salinity of the waters of the operating qanats varies from 0.3 to 0.94 g / l and their chemical composition is very favorable. The total alkalinity of qanat waters does not exceed the permissible limit and its value is 4–7 mg-eq/l, is transparent, does not have a specific odor, there are no heavy metals and other harmful ingredients in the water. The value of the irrigation coefficient is high and is 15–84. According to all quality indicators, the qanat waters are suitable for water supply and irrigation.


Author(s):  
I. Sh. Normatov ◽  
V.V. Goncharuk ◽  
N.A. Amirgaliev ◽  
A.S. Madibekov ◽  
A.I. Normatov

The water quality of the transboundary Pyanj River in the formation zone and along the riverbed before merging with another tributary of the transboundary Amu Darya River-the Vakhsh River was studied. The water quality on the upstream river corresponds to the very soft class (> 1.5 mmol/dm3) and in the middle and the downstream to the soft class (1.5-3.0 mmol/dm3). At the upper, middle and lower reaches of the Pyanj river the concentration of alkaline earth exceeds alkali metals (Ca2+ + Mg2+> Na+ + K+) at HCO3- > SO42- + Cl- and according to the Handa classification they are characterized by temporary rigidity. To assess the criterion of applicability of the Pyanj river water for irrigation the coefficient of sodium adsorption (SAC) was calculated for water samples from the upstream (Khorog), middle (Darvaz) and the downstream (Lower Pyanj) of the Pyanj river that were equal to 0.88; 1.07; 1.71, respectively. The SAC values for all water samples (from the upper, middle and lower reaches) of the Pyanj river indicate their good qualities for irrigation of agricultural land. The concentration of heavy metals in the Pyanj river is significantly lower than the maximum permissible concentration (MPC).


2019 ◽  
Vol 13 (28) ◽  
pp. 116-124
Author(s):  
Zainab Bahaa Mohammed

In this research, the water quality of the potable water network inAl-Shuala Baghdad city were evaluated and compare them with theIraqi standards (IQS) for drinking water and World HealthOrganization standards (WHO), then water quality index (WQI) werecalculator: pH, heavy metals (lead, cadmium and iron), chlorides,total hardness, turbidity, dissolved oxygen, total dissolved solid andelectrical conductivity. Water samples are collected weekly duringthe period from February 2015 to April 2015 from ten sites. Resultsshow that the chlorides, total dissolved solid and electricalconductivity less than acceptable limit of standards, but totalhardness and heavy metals in some samples higher than acceptablelimit of standards while the other parameter is good.WQI shows thatresults is excellent and good for drinking for all location and monthsexcept site (2) gave higher value (65.184) in March and site (9) gavehigh value (57.78, 57.23) at March and April indicate that sites ispoor for drinking water.


2020 ◽  
Vol 6 (2) ◽  
pp. 79-88
Author(s):  
Z.O. Normakhmedova ◽  
◽  
A.V. Mitusov

This article presents the study results of the change dynamics in the chemical composition of water in Lake Iskanderkul and the rivers flowing into it, as well as the comparison of water quality in the water bodies of the Iskanderkul Basin and several mid-stream tributaries of the Zarafshan River. It was established that the chemical composition of water in Lake Iskanderkul and its tributaries meets the requirements of the corresponding state standard (GOST 2874-82 “Drinking Water”). However, in terms of dissolved oxygen, copper, zinc, lead and iron the water in Lake Iskanderkul does not satisfy fish farming requirements. The main water pollution sources in the area include such natural phenomena as floods, avalanches, mudslides, and rock dissolution.


2019 ◽  
Vol 28 (2) ◽  
pp. 147-158
Author(s):  
Mohammad Saiful Islam ◽  
Romana Afroz ◽  
Md Bodruddoza Mia

This work has been conducted to evaluate the water quality of the Buriganga river. In situ water quality parameters and water samples were collected from 10 locations in January 2016 and analyzed later in laboratory for water quality parameters such as pH, Eh, EC, TDS, cations (Na+, K+, Ca2+, Mg2, As3+), anions (Cl-, HCO3-, NO2-, NO3-, SO42-, F-, Br-, PO43-), heavy metals (Cr2+, Pb2+, Zn2+, Cd+2, Fe2+, Mn2+) to see whether or not the level of these parameters are within the permissible limits. The average values of pH, Eh, EC and temperature were 7.31, –214.9 mV, 928.9 μs/cm and 21.4°C, respectively; the average concentration of Na+, K+, Ca2+, Mg2+, and As3+ were 109.62, 13.38, 46.78, 13.98 and 0.018 mg/l, respectively, while the concentrations of Cl-,HCO3-, PO43-, SO42-, NO3-, NO2-, F and Br -were 79, 331.06, 2.22, 84.32, 0.0254, 0.058, 0.224 and 0.073 mg/l, respectively; and the concentration of heavy metals Pb2+, Zn2+, Fe2+ and Mn2+were 0.28, 0.053, 0.17 and 0.23 mg/l, respectively. The study indicates that most of the parameters are within the permissible limits set by Bangladesh water quality standard. The concentrations of K+, Mn2+, and Pb2+ were beyond the permissible limits meaning that that the water of Buriganga is not safe for drinking. The people living beside Buriganga river should be more cautious about using the polluted/contaminated river water. The concerned authorities should take urgent necessary steps to improve the degraded water quality of the river considering the ecological, environmental and economic implications associated with it. Dhaka Univ. J. Biol. Sci. 28(2): 147-158, 2019 (July)


2019 ◽  
Vol 31 (3) ◽  
pp. 515-521
Author(s):  
Gurjeet Kaur ◽  
Sangeeta Sharma ◽  
Umesh Kumar Garg

Malwa region of Punjab state, India has become the center of water borne diseases due to excessive use of pesticides, chemical fertilizers, heavy metals, industrial toxins that cause toxicity in water. The main contamination in ground water is by physico-chemical parameters and heavy metals i.e. pH, total dissolved solids, total alkalinity, total hardness, calcium, chlorides, fluorides, arsenic and lead. The contamination of ground water with heavy metals causes health hazards to humans and animals. Due to lack of adequate facilities and resources for the management and handling of waste, the ground water contamination has been increased. In the present study, assessment of ground water quality was carried out in the villages of Ferozepur district of Punjab state, India. With main emphasis on analyzing the groundwater parameters of Ferozepur district which are responsible for health hazard to humans and animals. Various groundwater samples were collected randomly from the villages of Ferozepur district and analyzed for pH, total dissolved solids, total alkalinity, total hardness, calcium, chlorides, fluorides, heavy metals (arsenic and lead) using standard procedures. The concentrations of calcium, chlorides, fluorides and pH were within the permissible limits, whereas, alkalinity and total hardness were observed beyond permissible limits in most of the water samples. Even among majority of the samples taken, the concentration of arsenic and lead was found within the permissible limits. Results showed that the ground water samples collected from depth ranging from 100 to 360 ft, recorded values within permissible limits for drinking purpose as prescribed by WHO. Further, ANOVA has been applied on analysis results to study the effect of pH on fluoride and chloride, depth on fluoride and chloride and depth on arsenic and lead. Also, to adjudge the overall quality of water in Ferozepur district, the water quality index (WQI) has been calculated on the basis of large number of physico-chemical characteristics of water. The water quality index of ground water in Ferozepur district has been calculated to be 107. The value is close to 100 so the quality of ground water in Ferozepur district can be categorized under 'Good Quality' water.


1997 ◽  
Vol 36 (11) ◽  
pp. 251-258 ◽  
Author(s):  
Bernd Wiebusch ◽  
Carl Franz Seyfried

Several aspects of using ashes from sewage sludge incineration in the brick and tile industry have been examined. After discussing the item of ash production in Germany, the impact of different wastewater treatment methods is described; for instance, the use of precipitation agents containing iron will considerably influence the ash quality. Depending on their respective chemical composition, different ashes have different effects on the ceramic qualities of the bricks made of clay blended with ashes. These effects will be shown in regard to the major ceramic parameters. Similarly, the quality of the ashes also influences the elution behaviour and the mineral fixation of heavy metals.


2020 ◽  
Vol 1 (2) ◽  
pp. 465-478
Author(s):  
Yosef Basher Al Sadea ◽  
, Rafallah Mohamed Attya ◽  
Mostafa Ali Benzaghta ◽  
Mohammed Mansour Aljaer

The groundwater is considered as essential resources for Irrigation in Misurata city, this type of Irrigation suffered to some problems affecting their quality. The aim of this study was to evaluate, a physiochemical and biological parameters of wells water in Misurata Area during the period between November 2016 to December 2018. The area of study about 70 Km distance between Tawarq and Eldafina was divided into eight lines per appendicular to sea cost. Five water sample were taken for each line, in which the distance about 20 Km between each line. The pH, SO4, HCO3, Ca, and D.O were within the permissible levels a according to FAO standard as well as, SAR, RSC, SSP were acceptable while EC, TDS, Cl-, K+ and Mg++, were higher than the standard, moreover, the temperature, was normal in all the samples. The heavy metals values of Fe, Mn, Zn and Cu were within the standard. In general, the results showed that high values of EC, TDS, Cl-, and Mg++ were the main reasons which lead to the deterioration of water irrigation. Therefore, the water was inadequate for agricultural purpose without any treatment such as desalination to reduce the salinity, Also the results of microbiologic analysis showed a contamination in most sample.


2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Wike Ayu Eka Putri ◽  
Dietriech G. Bengen ◽  
Etty Riani

The Musi River is one of the biggest river of twelve big rivers in South Sumatra Province. Water quality of this river affects the water quality in the estuary and biological health in its surrounding so that it is important to determine the Cu and Pb concentrations. The purposes of this study were to analize distribution of heavy metals (Cu and Pb) and to determine the water quality status in March and September 2014. The water and sediment samples were collected from eight stations along the Musi River from downstream to the estuary. Heavy metal concentration was analized by employing USEPA 30050B method using AAS Spektra plus variant with air mixure flame – acetylene. Dissolved Cu and Pb concentrations in March were 0,002 - 0,006 mg/l and 0,002-0,003 mg/l, respectively, while in September were 0,001-0,010 mg/lfor Cu and 0,001-0,005 mg/lfor Pb. Cu and Pb concentrations in sediment detected in March were 6,92-16,4 mg/l and 1,9-11,4 mg/l, respectively, while in September were  2,3-13,9 mg/l for Cu and 4,29-9,95 mg/l for Pb. Student test analysis showed that was no significant differences between Pb and Cu concentrations (dissolved and sediment) between March and September. Generally, the concentration of heavy metals Cu and Pb in Musi River estuary were still below specified quality standards.Keywords: heavy metal, Cu, Pb, the Musi River, estuary


Sign in / Sign up

Export Citation Format

Share Document