scholarly journals Groundwater flow simulation through the application of the FREEWAT modeling platform

2019 ◽  
Vol 21 (5) ◽  
pp. 812-833 ◽  
Author(s):  
Evgenia Koltsida ◽  
Andreas Kallioras

Abstract FREEWAT is a free and open source QGIS-integrated platform, developed to simulate several hydrological processes by combining the capabilities of geographic information system (GIS) for geo-processing and post-processing tools with several codes of the well-known USGS MODFLOW ‘family’. FREEWAT platform was applied for the groundwater flow simulation of a coastal aquifer system, located in northern Greece. The simulation was conducted using the MODFLOW_2005 code, the Observation Analysis Tool (a FREEWAT module facilitating the integration of time series observations into modeling), while the UCODE_2014 code was used as the main module for the sensitivity analysis and parameter estimation. The statistics used include composite scaled sensitivities, parameter correlation coefficients, and leverage. The simulation of the investigated aquifer system was found to be satisfactory, indicating that the simulated level values were slightly greater than the observed values after the optimization.

Author(s):  
John P. Masterson ◽  
Carl S. Carlson ◽  
Donald A. Walter ◽  
Gardner C. Other contributing authors: Bent ◽  
Andrew J. Massey

Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Ioannis Gkiougkis ◽  
Christos Pouliaris ◽  
Fotios-Konstantinos Pliakas ◽  
Ioannis Diamantis ◽  
Andreas Kallioras

In this paper, the development of the conceptual and groundwater flow model for the coastal aquifer system of the alluvial plain of River Nestos (N. Greece), that suffers from seawater intrusion due to over-pumping for irrigation, is analyzed. The study area is a typical semi-arid hydrogeologic environment, composed of a multi-layer granular aquifers that covers the eastern coastal delta system of R. Nestos. This study demonstrates the results of a series of field measurements (such as geophysical surveys, hydrochemical and isotopical measurements, hydro-meteorological data, land use, irrigation schemes) that were conducted during the period 2009 to 2014. The synthesis of the above resulted in the development of the conceptual model for this aquifer system, that formed the basis for the application of the mathematical model for simulating groundwater flow. The mathematical modeling was achieved using the finite difference method after the application of the USGS code MODFLOW-2005.


2011 ◽  
Vol 28 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Xiaohui Ji ◽  
Tangpei Cheng ◽  
Qun Wang

2021 ◽  
Vol 926 (1) ◽  
pp. 012078
Author(s):  
D L Setyaningsih ◽  
K D Setyawan ◽  
D P E Putra ◽  
Salahuddin

Abstract Randublatung groundwater basin is one of the groundwaters basins with massive utilization of groundwater pumping. However, the knowledge of the comprehensive hydrogeological system in this groundwater basin is limited, so this research aims to determine a comprehensive hydrogeological conceptual model of the Randublatung groundwater basin. The methodology was conducted by collecting secondary and primary data of deep and shallow wells to evaluate boundaries of pattern and direction of groundwater flow and develop the aquifer system’s geometry. The result shows that the groundwater flow boundaries are Grogol River in the west, Wado River in the East, Bengawan Solo river in the South as a river boundary, and Rembang Mountains in the North as a constant head boundary. Therefore, groundwater flows from the hills area to the Bengawan Solo River and the north as the river’s flow. Based on the log bor evaluation, the aquifer system of the study area consist of an unconfined aquifer with a maximum thickness of 20 m and three layers of confined aquifers with thickness vary between 8 to 60 m. the hydraulic conductivity of the aquifers depends on the aquifer’s lithology range from sand, gravel, limestone, and sandstone. This hydrogeological conceptual model provides essential information for numerical groundwater models in the middle of the Randublatung groundwater basin.


2018 ◽  
Author(s):  
Chao Chen ◽  
Sajjad Ahmad ◽  
Ajay Kalra

Abstract. In Coupled Groundwater and Surface-Water Flow (GSFLOW) model, the three-dimensional finite-difference groundwater model (MODFLOW) plays a critical role of groundwater flow simulation, together with which the Precipitation-Runoff Modeling System (PRMS) simulates the surface hydrologic processes. While the model development of each individual PRMS and MODFLOW model requires tremendous time and efforts, further integration development of these two models exerts additional concerns and issues due to different simulation realm, data communication, and computation algorithms. To address these concerns and issues in GSFLOW, the present paper proposes a conceptual framework from perspectives of: Model Conceptualization, Data Linkages and Transference, Model Calibration, and Sensitivity Analysis. As a demonstration, a MODFLOW groundwater flow system was developed and coupled with the PRMS model in the Lehman Creek watershed, eastern Nevada, resulting in a smooth and efficient integration as the hydrogeologic features were well captured and represented. The proposed conceptual integration framework with techniques and concerns identified substantially improves GSFLOW model development efficiency and help better model result interpretations. This may also find applications in other integrated hydrologic modelings.


Sign in / Sign up

Export Citation Format

Share Document