Hydrogeology and Simulation of Groundwater Flow in the Plymouth-Carver-Kingston-Duxbury Aquifer System, Southeastern Massachusetts

Author(s):  
John P. Masterson ◽  
Carl S. Carlson ◽  
Donald A. Walter ◽  
Gardner C. Other contributing authors: Bent ◽  
Andrew J. Massey
Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Ioannis Gkiougkis ◽  
Christos Pouliaris ◽  
Fotios-Konstantinos Pliakas ◽  
Ioannis Diamantis ◽  
Andreas Kallioras

In this paper, the development of the conceptual and groundwater flow model for the coastal aquifer system of the alluvial plain of River Nestos (N. Greece), that suffers from seawater intrusion due to over-pumping for irrigation, is analyzed. The study area is a typical semi-arid hydrogeologic environment, composed of a multi-layer granular aquifers that covers the eastern coastal delta system of R. Nestos. This study demonstrates the results of a series of field measurements (such as geophysical surveys, hydrochemical and isotopical measurements, hydro-meteorological data, land use, irrigation schemes) that were conducted during the period 2009 to 2014. The synthesis of the above resulted in the development of the conceptual model for this aquifer system, that formed the basis for the application of the mathematical model for simulating groundwater flow. The mathematical modeling was achieved using the finite difference method after the application of the USGS code MODFLOW-2005.


2021 ◽  
Vol 926 (1) ◽  
pp. 012078
Author(s):  
D L Setyaningsih ◽  
K D Setyawan ◽  
D P E Putra ◽  
Salahuddin

Abstract Randublatung groundwater basin is one of the groundwaters basins with massive utilization of groundwater pumping. However, the knowledge of the comprehensive hydrogeological system in this groundwater basin is limited, so this research aims to determine a comprehensive hydrogeological conceptual model of the Randublatung groundwater basin. The methodology was conducted by collecting secondary and primary data of deep and shallow wells to evaluate boundaries of pattern and direction of groundwater flow and develop the aquifer system’s geometry. The result shows that the groundwater flow boundaries are Grogol River in the west, Wado River in the East, Bengawan Solo river in the South as a river boundary, and Rembang Mountains in the North as a constant head boundary. Therefore, groundwater flows from the hills area to the Bengawan Solo River and the north as the river’s flow. Based on the log bor evaluation, the aquifer system of the study area consist of an unconfined aquifer with a maximum thickness of 20 m and three layers of confined aquifers with thickness vary between 8 to 60 m. the hydraulic conductivity of the aquifers depends on the aquifer’s lithology range from sand, gravel, limestone, and sandstone. This hydrogeological conceptual model provides essential information for numerical groundwater models in the middle of the Randublatung groundwater basin.


2014 ◽  
Vol 5 (3) ◽  
pp. 457-471 ◽  
Author(s):  
M. Mastrocicco ◽  
N. Colombani ◽  
A. Gargini

A modelling study on a multi-layered confined/unconfined alluvial aquifer system was performed to quantify surface water/groundwater interactions. The calibrated groundwater flow model was used to forecast climate change impacts by implementing the results of a downscaled A1B model ensemble for the Po river valley. The modelled area is located in the north-western portion of the Ferrara Province (Northern Italy), along the eastern bank of the Po river. The modelling procedure started with a large scale steady state model followed by a transient flow model for the central portion of the domain, where a telescopic mesh refinement was applied. The calibration performance of both models was satisfactory, in both drought and flooding conditions. Subsequently, forecasted rainfall, evapotranspiration and Po river stage at 2050, were implemented in the calibrated large scale groundwater flow model and their uncertainties discussed. Three scenarios were run on the large scale model: the first simulating mean hydrological conditions and the other two simulating one standard deviation above and below the mean hydrological conditions. The forecasted variations in groundwater/Po river fluxes are relevant, with a general increase of groundwater levels due to local conditions, although there are large uncertainties in the predicted variables.


2006 ◽  
Vol 70 (18) ◽  
pp. A692
Author(s):  
T.R. Weaver ◽  
E.A. Carrara ◽  
I. Cartwright ◽  
R. Cresswell ◽  
R. Maas

Sign in / Sign up

Export Citation Format

Share Document