A Growth Model for Black Ice, Snow Ice and Snow Thickness in Subarctic Basins

1983 ◽  
Vol 14 (2) ◽  
pp. 59-70 ◽  
Author(s):  
Matti Leppäranta

A model for the growth of ice thickness in autumn and winter is presented. Temperature of the upper surface of the ice sheet, snowfall and heat flux from the water are external input variables, and the thickness of black ice, snow ice and snow and the density of snow are predicted through the model. Thermal inertia is neglected. The results are sensitive to the assumed density of freshly fallen snow and the formulation of snow metamorphism. Comparisons between observations and model calculations are given. The agreement is moderate and the need for field work on snow on ice is recognized. A discussion is given on the maximum annual ice thickness under varying external conditions.

2009 ◽  
Vol 26 (4) ◽  
pp. 818-827 ◽  
Author(s):  
Ruibo Lei ◽  
Zhijun Li ◽  
Yanfeng Cheng ◽  
Xin Wang ◽  
Yao Chen

Abstract High-precision ice thickness observations are required to gain a better understanding of ocean–ice–atmosphere interactions and to validate numerical sea ice models. A new apparatus for monitoring sea ice and snow thickness has been developed, based on the magnetostrictive-delay-line (MDL) principle for positioning sensors. This system is suited for monitoring fixed measurement sites on undeformed ice. The apparatus presented herein has been tested on landfast ice near Zhongshan Station, East Antarctica, for about 6 months during the austral autumn and winter of 2006; valid data records from the deployment are available for more than 90% of the deployment’s duration. The apparatus’s precision has been estimated to be ±0.002 m for the deployment. Therefore, it is possible that this apparatus may become a standard for sea ice/snow thickness monitoring.


1988 ◽  
Vol 10 ◽  
pp. 221 ◽  
Author(s):  
Wu Xiaoling ◽  
Lonnie G. Thompson

A cooperative glacio-climatological ice-core drilling and analysis program, administered by LIGC and BPRC, has been carried out since 1984. The major objective of this study is to extract from the Dunde ice cap records of the general environmental conditions, which include drought, volcanic activity, moisture sources, glacier net balance and possibly temperature over the last 3000 years. In 1984 a group of 18 Chinese scientists and an American scientist spent 6 weeks on the Dunde ice cap. The central objective of their research was to evaluate the potential of the ice cap to yield a lengthy ice-core climate record. Results of the 1984 field work and 1985 laboratory analysis are submitted here. The Dunde ice cap (38°96′N, 96°24.5′E) is located in the north-eastern section of the Tibet plateau, China. Its length is 10.9 km; the width varies from 2.5 to 7.5 km. The total area of the ice cap is 57 km2. A 16 m core was drilled at the first site, located on a flat part of the ice cap, 5150 m a.s.l. A 10.2 m ice core was drilled at the ice cap summit (5300 m). A series of shallow cores and 2 m pits were excavated at each of the two sites and in the lower section of the ice cap. A mono-pulse radar unit was used to determine ice thickness. The ice thickness ranged between 94 and 167 m, with an average thickness of 140 m. Using a thermistor cable, minimum temperatures of −9.1° and −9.5 °C were measured in the 16 m hole and 10.2 m hole respectively. Microparticle analysis of the ice core from the Dunde ice cap revealed a very high dust content, on average 16 × 105 particles (≥0.63 to ≤16 μ in diameter) per ml of sample, i.e. 3−4 times higher than the microparticle content in the Quelccaya ice cap, Peru, and 100 times higher than in the core from Byrd Station, Antarctica. Oxygen-isotope content ranged between −12 and −14 per mil. Initially it was anticipated that the oxygen-isotope content would produce a more negative value in the Dunde ice cap. More work is required to explain the mechanism controlling δ18o variation in the ice core from the Dunde ice cap. The microparticles, oxygen-isotope content, conductivity, and tritium measurements, together with stratigraphy, temperature and density, are presented in the figures. The 40 year net-balance record reconstructed from the ice-core and oxygen-isotope profile is in good agreement with data from precipitation and major temperature trends obtained for the last 30 years from Delingha meteorological station, which is located 160 km south-east of the ice cap.


2010 ◽  
Vol 4 (4) ◽  
pp. 583-592 ◽  
Author(s):  
L. Kaleschke ◽  
N. Maaß ◽  
C. Haas ◽  
S. Hendricks ◽  
G. Heygster ◽  
...  

Abstract. In preparation for the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, we investigated the potential of L-band (1.4 GHz) radiometry to measure sea-ice thickness. Sea-ice brightness temperature was measured at 1.4 GHz and ice thickness was measured along nearly coincident flight tracks during the SMOS Sea-Ice campaign in the Bay of Bothnia in March 2007. A research aircraft was equipped with the L-band Radiometer EMIRAD and coordinated with helicopter based electromagnetic induction (EM) ice thickness measurements. We developed a three layer (ocean-ice-atmosphere) dielectric slab model for the calculation of ice thickness from brightness temperature. The dielectric properties depend on the relative brine volume which is a function of the bulk ice salinity and temperature. The model calculations suggest a thickness sensitivity of up to 1.5 m for low-salinity (multi-year or brackish) sea-ice. For Arctic first year ice the modelled thickness sensitivity is less than half a meter. It reduces to a few centimeters for temperatures approaching the melting point. The campaign was conducted under unfavorable melting conditions and the spatial overlap between the L-band and EM-measurements was relatively small. Despite these disadvantageous conditions we demonstrate the possibility to measure the sea-ice thickness with the certain limitation up to 1.5 m. The ice thickness derived from SMOS measurements would be complementary to ESA's CryoSat-2 mission in terms of the error characteristics and the spatiotemporal coverage. The relative error for the SMOS ice thickness retrieval is expected to be not less than about 20%.


Author(s):  
Paolo E. Santangelo ◽  
Noah L. Ryder ◽  
Andre´ W. Marshall ◽  
Christopher F. Schemel

Flammability properties of solid materials are necessary to be a known parameter for many purposes: among them, forensic investigations of fire and explosion events, fire risk or hazard analysis, design and development of combustion-based systems. However, despite the large quantity of data in the literature, the flammability properties of many materials still appear not to be available or show a degree of uncertainty associated with them, which makes their value limited. The present work is aimed at proposing a calorimetric-based approach to determine some flammability and thermophysical properties of solids, with specific regard to time-to-ignition as a function of the imposed heat flux. Plastic materials have been here chosen as test cases, even though this approach has a general applicability. The two mentioned parameters have been analyzed to provide a quantitative estimation of the critical heat flux (minimum heat flux resulting in ignition). A cone calorimeter has been employed to conduct the experiments: the facility complies with standard ASTM E 1354; the related uncertainty and validity range has been evaluated through an appropriate error analysis. Finally, thermal inertia has been thereby calculated for the considered materials through a simple thermodynamic model, which is based upon critical heat flux and energy conservation.


2015 ◽  
Vol 56 (69) ◽  
pp. 363-372 ◽  
Author(s):  
Andrew R. Mahoney ◽  
Hajo Eicken ◽  
Yasushi Fukamachi ◽  
Kay I. Ohshima ◽  
Daisuke Simizu ◽  
...  

AbstractData from the Seasonal Ice Zone Observing Network (SIZONet) acquired near Barrow, Alaska, during the 2009/10 ice season allow novel comparisons between measurements of ice thickness and velocity. An airborne electromagnetic survey that passed over a moored Ice Profiling Sonar (IPS) provided coincident independent measurements of total ice and snow thickness and ice draft at a scale of 10 km. Once differences in sampling footprint size are accounted for, we reconcile the respective probability distributions and estimate the thickness of level sea ice at 1.48 ± 0.1 m, with a snow depth of 0.12 ± 0.07 m. We also complete what we believe is the first independent validation of radar-derived ice velocities by comparing measurements from a coastal radar with those from an under-ice acoustic Doppler current profiler (ADCP). After applying a median filter to reduce high-frequency scatter in the radar-derived data, we find good agreement with the ADCP bottom-tracked ice velocities. With increasing regulatory and operational needs for sea-ice data, including the number and thickness of pressure ridges, coordinated observing networks such as SIZONet can provide the means of reducing uncertainties inherent in individual datasets.


2007 ◽  
Vol 25 (4) ◽  
pp. 273-299
Author(s):  
I. Lerche ◽  
K. Reicherter

This paper derives an inverse set of equations for equilibrium situations to discuss the resolution and sensitivity of models used to describe tectonic uplift and thermal heat flux. The sensitivity of results to variations in single parameters away from a described set of canonical values is given first. This sensitivity study is followed by a detailed treatment describing the probabilities of obtaining mantle thickness, surface heat flux, thermal expansion coefficient, base crustal heat flux, and Moho temperature at or above particular values as the water density, crustal density, asthenospheric density, uplift, crustal thickness, average lithospheric density, base lithospheric temperature, and water depth to the free asthenosphere marker are all allowed to vary simultaneously around their canonical values. In addition, a relative contribution plot for each of the five output variables identifies which of the eight input variables is causing the greatest contribution to the uncertainty. In this way one can identify which variables need to have their ranges of uncertainty narrowed in order to be more precise about the chances of obtaining particular values for the five outputs. A skewness estimate also is given that enables one to determine the most likely directions one should expect improvement to occur with a probability plot of obtaining particular values, or higher, for each of the output variables. Numerical illustrations show how one goes about performing the quantitative assessments and also show how the inverse procedure allows one to be more definitive concerning the five output values, and their ranges of uncertainty, because of uncertainties in the eight input parameter values.


2015 ◽  
Vol 45 (11) ◽  
pp. 2820-2835 ◽  
Author(s):  
Michael A. Spall

AbstractThe response of a convective ocean basin to variations in atmospheric temperature is explored using numerical models and theory. The results indicate that the general behavior depends strongly on the frequency at which the atmosphere changes relative to the local response time to air–sea heat flux. For high-frequency forcing, the convective region in the basin interior is essentially one-dimensional and responds to the integrated local surface heat flux anomalies. For low-frequency forcing, eddy fluxes from the boundary current into the basin interior become important and act to suppress variability forced by the atmosphere. A theory is developed to quantify this time-dependent response and its influence on various oceanic quantities. The amplitude and phase of the temperature and salinity of the convective water mass, the meridional overturning circulation, the meridional heat flux, and the air–sea heat flux predicted by the theory compare well with that diagnosed from a series of numerical model calculations in both strongly eddying and weakly eddying regimes. Linearized analytic solutions provide direct estimates of each of these quantities and demonstrate their dependence on the nondimensional numbers that characterize the domain and atmospheric forcing. These results highlight the importance of mesoscale eddies in modulating the mean and time-dependent ocean response to atmospheric variability and provide a dynamical framework with which to connect ocean observations with changes in the atmosphere and surface heat flux.


1987 ◽  
Vol 135 ◽  
pp. 87-95
Author(s):  
L Thorning ◽  
E Hansen

The first successful application of electromagnetic ref1ection (EMR) techniques for determination of ice thickness in the outermost margin of the Inland Ice adjacent to the Pâkitsoq basin took place in luly 1985 (Thorning et al., 1986). Although the survey was planned as a series of experiments to examine why previous attempts had not worked, the EMR data acquired were of very good quality and could be compiled into a preliminary map of ice thickness and a map of the subglacial topography over part of the region. Thus, by early 1986 it Rapp. Grønlands geol. Unders. 135, 87-95 (1987) was known that the method worked and could be compiled through to the final product. With the increasing interest in this region, which is the planned location of the first hydroelectric power plant in Greenland, it was necessary to return in 1986 to survey the area in greater detail and to extend the coverage to the east. This note describes the field work carried out in April 1986 and the subsequent compilation and analysis of the combined EMR data sets from 1985 and 1986.


2021 ◽  
Author(s):  
Tong Lee ◽  
Chelle Centemann ◽  
Carol Anne Clayson ◽  
Mark Bourassa ◽  
Shannon Brown ◽  
...  

<p>Air-sea turbulent heat fluxes and their spatial gradients are important to the ocean, climate, weather, and their interactions. Satellite-based estimation of air-sea latent and sensible fluxes, providing broad coverage, require measurements of sea surface temperature, ocean-surface wind speed, and air temperature and humidity above sea surface. Because no single satellite has been able to provide simultaneous measurements of these input variables, they typically come from various satellites with different spatial resolutions and sampling times that can be offset by hours. These factors introduce errors in the estimated heat fluxes and their gradients that are not well documented. As a model-based assessment of these errors, we performed a simulation using a Weather Research and Forecasting (WRF) model forced by high-resolution blended satellite SST for the Gulf Stream extension region with a 3-km resolution and with 30-minute output. Latent and sensible heat fluxes were first computed from input variables with the original model resolutions and at coincident times. We then computed the heat fluxes by (1) decimating the input variables to various resolutions from 12.5 to 50 km, and (2) offsetting the “sampling” times of some input variables from others by 3 hours. The resultant estimations of heat fluxes and their gradients from (1) and (2) were compared with the counterparts without reducing resolution and without temporal offset of the input variables. The results show that reducing input-variable resolutions from 12.5 to 50 km weakened the magnitudes of the time-mean and instantaneous heat fluxes and their gradients substantially, for example, by a factor of two for the time-mean gradients. The temporal offset of input variables substantially impacted the instantaneous fluxes and their gradients, although not their time-mean values. The implications of these effects on scientific and operational applications of heat flux products will be discussed. Finally, we highlight a mission concept for providing simultaneous, high-resolution measurements of boundary-layer variables from a single satellite to improve air-sea turbulent heat flux estimation.</p>


Sign in / Sign up

Export Citation Format

Share Document