Removing phosphorus with Ca-Fe oxide granules – a possible wetlands filter material

2013 ◽  
Vol 45 (3) ◽  
pp. 368-378 ◽  
Author(s):  
Egle Saaremäe ◽  
Martin Liira ◽  
Morten Poolakese ◽  
Toomas Tamm

Phosphorus (P) is one of the nutrients causing eutrophication in many of our waterways. In the present study, we investigated Sachtofer PR Ca-Fe oxide granules as a potential P sorption material (PSM) for constructed wetlands. We found the P sorption with various experiments as follows: the 24 h batch experiment with the highest initial concentration of 50 mgP L−1 yielded 0.48 mgP g−1 P removal per mass unit, the kinetic P removal batch experiment of 600 h duration yielded 1.25 mgP g−1, the maximum phosphorus adsorption capacity estimated from the Langmuir equation yielded 23.78 mgP g−1, and the long term flow-through experiment with drainage ditch water yielded indicative saturated sorption of 1.4 mgP g−1. Flow-through experiments revealed that phosphate removal was rapid and the efficiency was 10–70%, depending on the retention time and age of granules. Possible weaknesses of this material for sorption filter systems were found to include the loss of mass caused by the rapid dissolution of gypsum, increased sulfate and calcium concentrations in the water, and rapidly changing hydraulic conductivity. Considering hydraulic and chemical properties, further pilot experiments are necessary to develop technical solutions for optimal use of Ca-Fe oxide granules in sorption filter systems at constructed wetlands.

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2883
Author(s):  
Rasa Vismontienė ◽  
Arvydas Povilaitis

Biochar has received increased attention in environmental applications in recent years. Therefore, three pilot-scale denitrifying bioreactors, one filled with woodchips only and the other two enriched with 10% and 20% by volume of biochar from deciduous wood, were tested under field conditions for the removal of nitrate (NO3-N) and phosphate (PO4-P) from tile drainage water in Lithuania over a 3-year period. The experiment showed the possibility to improve NO3-N removal by incorporating 20% biochar into woodchips. Compared to the woodchips only and woodchips amended with 10% biochar, the NO3-N removal effect was particularly higher at temperatures below 10.0 °C. The results also revealed that woodchips alone can be a suitable medium for PO4-P removal, while the amendment of biochar to woodchips (regardless of 10% or 20%) can lead to large releases of PO4-P and other elements. Due to the potential adverse effects, the use of biochar in woodchip bioreactors has proven to be very limited and complicated. The experiment highlighted the need to determine the retention capacity of biochar for relevant substances depending on the feedstock and its physical and chemical properties before using it in denitrifying bioreactors.


2005 ◽  
Vol 51 (9) ◽  
pp. 267-273 ◽  
Author(s):  
C.A. Arias ◽  
H. Brix

Removal of phosphorous in constructed wetlands is limited by the capacity of the media to adsorb, bind or precipitate the incoming P. To enhance P removal and the life span of constructed wetlands the approach might be to use natural sands rich in calcium or iron, to use an alternative ‘artificial’ medium with high P-binding capacity, or to establish external P-binding filters after the wetland. Our studies focused on the evaluation of calcium-rich materials potentially useful as P-binding media. The materials tested included calcite products, natural sands and seashells. Tests included assessment of physical and chemical properties of the materials, extractions in P-spiked water at different P concentrations to determine P-binding equilibrium isotherms, and column experiments. In addition, full-scale tests were performed with calcite in an external filter. The result showed that equilibrium isotherm is an indicator of the potential P-sorption capacity of the media, although the value is of limited application for the determination of the binding capacity in full-scale systems. The columns showed that the materials do bind phosphorus. However, the binding capacities are still insufficient for the establishment of external P-removal filter; the volumes of the filters would be too large to be of practical use.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 47-54 ◽  
Author(s):  
H. Brix ◽  
C.A. Arias ◽  
M. del Bubba

Sorption of phosphorus (P) to the bed sand medium is a major removal mechanism for P in subsurface flow constructed wetlands. Selecting a sand medium with a high P-sorption capacity is therefore important to obtain a sustained P-removal. The P-removal capacities of 13 Danish sands were evaluated and related to their physico-chemical characteristics. The P-removal properties of sands of different geographical origin varied considerably and the suitability of the sands for use as media in constructed reed beds thus differs. The P-sorption capacity of some sands would be used up after only a few months in full-scale systems, whereas that of others would subsist for a much longer time. The most important characteristic of the sands determining their P-sorption capacity was their Ca-content. Also the P-binding capacities of various artificial media were tested (light-expanded-clay-aggregates (LECA), crushed marble, diatomaceous earth, vermiculite and calcite). Particularly calcite and crushed marble were found to have high P-binding capacities. It is suggested that mixing one of these materials into the sand or gravel medium can significantly enhance the P-sorption capacity of the bed medium in a subsurface-flow constructed wetland system. It is also possible to construct a separate unit containing one of these artificial media. The media may then be replaced when the P-binding capacity is used up.


1991 ◽  
Vol 24 (10) ◽  
pp. 329-332
Author(s):  
P. M. J. Janssen ◽  
J. H. Rensink ◽  
E. Eggers
Keyword(s):  

2011 ◽  
Vol 63 (8) ◽  
pp. 1629-1637 ◽  
Author(s):  
N. Harouiya ◽  
S. Martin Rue ◽  
S. Prost-Boucle ◽  
A. Liénar ◽  
D. Esser ◽  
...  

Phosphorus (P) removals in constructed wetlands (CWs) have received particular attention in recent decades by using specific materials which promote adsorption/precipitation mechanisms. Recent studies have shown interest in using apatite materials to promote P precipitation onto the particle surface. As previous trials were mainly done by lab experiments, this present study aims to evaluate the real potential of apatites to remove P from wastewater in pilot units and a full-scale plant over a 2 year period. P retention kinetics of two qualities of apatites are presented and discussed. In this work apatite appears to have high retention capacity (>80% of P removal) and is still an interesting way for P removal in CWs for limiting the risk of eutrophication downstream of small communities. Nevertheless, the apatite quality appears to be of great importance for a reliable and long term P removal. The use of materials with low content of apatite mineral (40–50%) seems to be not economically relevant.


1999 ◽  
Vol 40 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Trond Mæhlum ◽  
Per Stålnacke

This paper outlines the influence of temperature, flow rate and input concentrations on the treatment efficiency of organic matter and nutrients in constructed wetlands (CWs). Three integrated 10 PE systems with horizontal subsurface flow (HSF) treating domestic wastewater are described. Particular attention is devoted to: (1) aerobic pre-treatment in vertical-flow filters, (2) filter media with high phosphorus (P) sorption capacity, and (3) the treatment efficiency during winters. Aerobic pre-treatment followed by CW units including P sorption media removed most organic matter (BOD> 75%), P (> 90%) and total and ammonia N (40-80%). P retention was relatively stable in wetland filters, both with lightweight aggregates and ferruginous sand during 3-6 years of monitoring. Iron-rich sand from Bsh and Bs horizons of ferro-humic podzols was efficient for P sorption, but removal efficiencies of COD, TOC and SS were negative. The differences in efficiency between cold and warm periods were less than 10 percentage points for all parameters. It is anticipated that temperature effects are partially compensated by the large hydraulic retention time. The findings suggest that HSF systems do not require vegetation.


2013 ◽  
Vol 37 (6) ◽  
pp. 521-530 ◽  
Author(s):  
Flávio Araújo Pinto ◽  
Edicarlos Damacena de Souza ◽  
Helder Barbosa Paulino ◽  
Nilton Curi ◽  
Marco Aurélio Carbone Carneiro

Phosphorus (P) sorption by soils is a phenomenon that varies depending on soil characteristics, influencing its intensity and magnitude, which makes it a source or drain of P. The objective of this study was to determine the Maximum Phosphorus Adsorption Capacity (MPAC) and desorption of P from soils under native Savanna Brazilian and verify the correlation between MPAC and P Capacity Factor (PCF) with the chemical and physical properties of these soils. The study was conducted in seven soils under native Savannas. The Langmuir isotherms were adjusted from the values obtained in sorption assays, being evaluated the MPAC, the energy adsorption (EA) and PCF, which was calculated according to the levels of P-adsorbed and P-sorbed. Values of MPAC were classified as high in most soils, ranging from 283 up to 2635 mg kg-1 of P in the soil and were correlated with soil organic matter, clay, silt, sand, base saturation and pH. The PCF was higher in soils where the MPAC was also higher. The use of only one attribute of soil (clay content) as a criterion for the recommendation of phosphated fertilization, as routinely done, is susceptible to errors, needing the use of more attributes for a more accurate recommendation, as a function of the complexity of the interactions involved in the process.


2007 ◽  
Vol 56 (3) ◽  
pp. 135-143 ◽  
Author(s):  
D. Weber ◽  
A. Drizo ◽  
E. Twohig ◽  
S. Bird ◽  
D. Ross

In 2003, a subsurface flow constructed wetlands (SSF-CW) system was built at the University of Vermont (UVM) Paul Miller Dairy Farm as an alternative nutrient management approach for treating barnyard runoff and milk parlour waste. Given the increasing problem of phosphorus (P) pollution in the Lake Champlain region, a slag based P-removal filter technology (PFT) was established (2004) at the CW with two objectives: (i) to test the filters' efficiency as an upgrade unit for improving P removal performance via SSF-CW (ii) to investigate the capacity of filters technology to remove P as a “stand alone” unit. Six individual filters (F1–F6) were filled with electric arc furnace (EAF) steel slag, each containing 112.5 kg of material with a pore volume of 21 L. F1–F4, fed with CW treated water, received approximately 2.17 g DRP kg−1 EAF steel slag (0.25 kg DRP total) during the 259 day feeding period. F1–F4 retained 1.7 g DRP kg−1 EAF steel slag, resulting in an average P removal efficiency of 75%. The addition of filters improved CW DRP removal efficiency by 74%. F5 and F6, fed non-treated water, received 1.9 g DRP kg−1 EAF steel slag (0.22 kg DRP in total) and retained 1.5 g DRP kg−1 resulting in a P removal efficiency of 72%. The establishment of the EAF slag based PFT is the first in-field evaluation of this technology to reduce P from dairy farm effluent in Vermont.


1991 ◽  
Vol 24 (10) ◽  
pp. 231-237
Author(s):  
W. G. Werumeus Buning ◽  
F. W. A. M. Rijnart ◽  
P. P. Weesendorp

To meet two levels of nitrogen and phosphorus removal (effluent standards Ntot 20 and 10 mg/l and Ptot 2 and 1 mg/l respectively) various systems were compared in a desk study. After a cost estimate and an assessment f the advantages and drawbacks, the oxidation ditch with biological by pass phosphate removal turned out to be the best system.


Sign in / Sign up

Export Citation Format

Share Document