Benefits of rainwater harvesting for gardening and implications for future policy in Namibia

Water Policy ◽  
2013 ◽  
Vol 16 (1) ◽  
pp. 124-143 ◽  
Author(s):  
L. Woltersdorf ◽  
A. Jokisch ◽  
T. Kluge

Rainwater harvesting to irrigate small-scale gardens enhances food self-sufficiency to overcome rural poverty. So far rainwater harvesting is not encouraged by the Namibian National Water Supply and Sanitation Policy nor supported financially by the Namibian government. This study proposes two rainwater harvesting facilities to irrigate gardens; one collects rain from household roofs with tank storage, the second collects rain on a pond roof with pond storage. The aim of this paper is to assess the benefits of rainwater harvesting-based gardening and to propose policy and financing implications for the Namibian government. We investigate the benefits of rainwater harvesting through a literature review, a cost–benefit analysis, monitoring of project pilot plants and a comparison with the existing irrigation and drinking water infrastructure. The results indicate that rainwater harvesting offers numerous benefits in technological, economic, environmental and social terms. The facilities have a positive net present value under favourable circumstances. However, material investment costs pose a financing problem. We recommend that government fund the rainwater harvesting infrastructure and finance privately garden and operation and maintenance costs. Integrating these aspects into a national rainwater harvesting policy would create the conditions to achieve the benefits of an up-scale of rainwater harvesting based gardening in Namibia.

2011 ◽  
pp. 57-78
Author(s):  
I. Pilipenko

The paper analyzes shortcomings of economic impact studies based mainly on input- output models that are often employed in Russia as well as abroad. Using studies about sport events in the USA and Olympic Games that took place during the last 30 years we reveal advantages of the cost-benefit analysis approach in obtaining unbiased assessments of public investments efficiency; the step-by-step method of cost-benefit analysis is presented in the paper as well. We employ the project of Sochi-2014 Winter Olympic and Paralympic Games in Russia to evaluate its efficiency using cost-benefit analysis for five accounts (areas of impact), namely government, households, environment, economic development, and social development, and calculate the net present value of the project taking into account its possible alternatives. In conclusion we suggest several policy directions that would enhance public investment efficiency within the Sochi-2014 Olympics.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1297
Author(s):  
Juntae Kim ◽  
Hyo-Dong Han ◽  
Wang Yeol Lee ◽  
Collins Wakholi ◽  
Jayoung Lee ◽  
...  

Currently, the pork industry is incorporating in-line automation with the aim of increasing the slaughtered pork carcass throughput while monitoring quality and safety. In Korea, 21 parameters (such as back-fat thickness and carcass weight) are used for quality grading of pork carcasses. Recently, the VCS2000 system—an automatic meat yield grading machine system—was introduced to enhance grading efficiency and therefore increase pork carcass production. The VCS2000 system is able to predict pork carcass yield based on image analysis. This study also conducted an economic analysis of the system using a cost—benefit analysis. The subsection items of the cost-benefit analysis considered were net present value (NPV), internal rate of return (IRR), and benefit/cost ratio (BC ratio), and each method was verified through sensitivity analysis. For our analysis, the benefits were grouped into three categories: the benefits of reducing labor costs, the benefits of improving meat yield production, and the benefits of reducing pig feed consumption through optimization. The cost-benefit analysis of the system resulted in an NPV of approximately 615.6 million Korean won, an IRR of 13.52%, and a B/C ratio of 1.65.


2021 ◽  
Author(s):  
Saptarshi Pal ◽  
Chengi Kuo

Abstract In the past 70 years the world has relied extensively for its energy needs based on hydrocarbons produced significantly offshore. In recent years many installations with fixed platforms and pipelines are reaching the end of their useful life and are required by law to be decommissioned and removed if an approved alternative use cannot be found. This process coincides with focus on decarbonization arising from global warming and climate change. The conventional way of decommissioning is to remove the structure and take it onshore for disposal. Such an activity costs around £28 million for smaller UKCS installations in the Southern North Sea. Possible alternative solutions include their use as a research-leisure complex and artificial reef. Such an approach would have less impact on the environment and it is therefore worthwhile to explore the feasibility of repurposing these decommissioned UKCS platforms. The paper begins by highlighting the background to UKCS offshore decommissioning and farming fish life-cycle. This is followed by a critical review of the three options of total and partial removals and leave-on-site. It is found that repurposing decommissioned platforms for aquaculture farm has not been given sufficient attention and thus offers scope for a project to explore the feasibility of such a solution. Existing offshore fish farming in various countries are examined before using a decision-making matrix to select the most suitable UKCS installation for conversion and this led to using a normally unattended gas platform for the case study. The focus for this paper is on design and operation of an unattended fish farm and its cost benefit analysis. The former covers fish cage selection, capacity calculation, fish handling procedures, fish feed characteristics, feed demand, designing feed logistics and storage system. The processing facilities are layout on two decks and power needs are generated using a hybrid system of diesel and Li-ion battery. The possibility of using renewable sources by connecting to wind energy grids was also considered. For the latter capital and operating expenditure, revenue generated and maintenance costs are estimated before performing net present value prediction of the profitability of the fish farm over 10 years with for example up to 8 cages and three discount rates. The main conclusions derived are: It is technically feasible to convert a decommissioned gas platform to a fish farm and the operation can be economic. However, liability transfer implications in a repurposed offshore decommissioned gas platforms to fish farms were not established to verify the project viability. The conversion of unattended offshore gas platforms in the UKCS to an automated offshore fish farm is a novel solution which has not been implemented in the North Sea before. The work will provide an economic and environmental friendly solution to decommissioning offshore platforms and provide with a possible profitable investment.


2016 ◽  
Vol 5 (4) ◽  
pp. 58
Author(s):  
Monika Ghimire ◽  
Art Stoecker ◽  
Tracy A. Boyer ◽  
Hiren Bhavsar ◽  
Jeffrey Vitale

<p class="sar-body"><span lang="EN-US">This study incorporates spatially explicit geographic information system and simulation models to develop an optimal irrigation system. The purpose of the optimized irrigation system was to save depleted ground water supplies. ArcGIS was used to calculate the area of potential irrigable soils, and EPANET (a hydrological simulation program) was used to calculate energy costs. Crop yield response functions were used to estimate the yield of cotton to the amount of irrigation and the accumulation of soil salinity over a 50-year period. Four irrigation designs (A, B, C, and D) were analyzed with different irrigation schedules.</span></p><p class="sar-body"><span lang="EN-US">Design A allowed all producers to irrigate simultaneously at 600 gallons per minute (gpm) or 2,271 liters per minute (lpm) while designs B and C divided the irrigable areas into two parts. Design D divided the areas into four parts to allow producers to irrigate one part at a time at 800 gpm (3,028 lpm). Irrigation scheduling not only lessened the water use and cost, but also amplified the profitability of the irrigation system. In design A, if all producers adopted 600 gpm (2,271 lpm) pivots and operated simultaneously, the cost of the 360,000 gpm (1363,000 lpm) pipeline would be prohibitive. In contrast, designs B, C, and D increased net benefits and lowered the breakeven price of cotton. The 50-year net present value for designs A, B, C, and D was profitable over 75, 70, 70, and 65 cents of cotton price per pound (454 g), respectively. Thus, this study endorses irrigation scheduling as a tool for efficient irrigation development and management, and increases water conservation.</span></p>


2014 ◽  
Vol 3 (5) ◽  
pp. 47
Author(s):  
Sanni Yaya ◽  
Xiaonan Li

This paper offers a general guide on how to conduct a proper economic analysis for community-based intervention projects. Identification and quantification of costs and benefits are the focus of the cost benefit analysis. We categorize costs and benefits from human and physical perspectives and pay special attention to the measures of saving human lives accompanied by the proposed calculation methods. We recommend net present value and benefit-cost ratio as the criteria to assess projects and highlight some challenges remaining in the analysis.


2019 ◽  
Vol 32 ◽  
pp. 385-389 ◽  
Author(s):  
Pavel Atănăsoae ◽  
Radu Dumitru Pentiuc ◽  
Dan Laurențiu Milici ◽  
Elena Daniela Olariu ◽  
Mihaela Poienar

2016 ◽  
Vol 20 (10) ◽  
pp. 4093-4115 ◽  
Author(s):  
Kharis Erasta Reza Pramana ◽  
Maurits Willem Ertsen

Abstract. Many small-scale water development initiatives are accompanied by hydrological research to study either the form of the intervention or its impacts. Humans influence both the development of intervention and research, and thus one needs to take human agency into account. This paper focuses on the effects of human actions in the development of the intervention and its associated hydrological research, as hydrological research is often designed without adequate consideration of how to account for human agency and that these effects have not yet been discussed explicitly in a systematic way. In this paper, we propose a systematic planning for hydrological research, based on evaluating three hydrological research efforts targeting small-scale water development initiatives in Vietnam, Kenya, and Indonesia. The main purpose of the three cases was to understand the functioning of interventions in their hydrological contexts. Aiming for better decision-making on hydrological research in small-scale water intervention initiatives, we propose two analysis steps, including (1) consideration of possible surprises and possible actions and (2) cost–benefit analysis. By performing the two analyses continuously throughout small-scale hydrological intervention-based initiatives, effective hydrological research can be achieved.


2015 ◽  
Vol 737 ◽  
pp. 794-799
Author(s):  
Liang Yu Xia ◽  
Jing Yi Wen

Owing to the growing gap of natural gas between supply and demand in China, the unconventional natural gas, including coal-bed methane (CBM) and shale gas, has been considered as strategic energy sources. An assessment by China’s Ministry of Land and Resources (MLR) announced that China has potentially resources of 36.7 trillion cubic meters of CBM and 25 trillion cubic meters of shale gas, larger than those of the U.S. Controversial views about their commercial prospects and priorities in order are available. This research aims at exploring which is more economically viable and worth the priority. A cost-benefit analysis (CBA) based on average single well data is employed to carry out a comparative analysis between two typical fields, the coal-bed methane (CBM) fields in the Qinshui basin and the shale gas fields in Sichuan basin. The net present value (NPV), the internal rate of return (IRR) and the payback period are used as indicators in this analysis. The results indicate that CBM is superior to shale gas in viability under the current technological and economic conditions, and the future of the CBM industry is clearer than that of the shale gas industry, but the latter is still promising if the drilling costs can be reduced significantly with technical progress. We suggest that the CBM industry should be given the priority to, and the policy for shale gas should focus on promoting technical innovations.


2003 ◽  
Vol 8 (2) ◽  
pp. 311-330 ◽  
Author(s):  
V. Santhakumar ◽  
Achin Chakraborty

This paper presents the operational procedures involved in incorporating the environmental costs in the cost–benefit analysis of a hydro-electric project. The proposed project, if implemented, would result in the loss of 2,800 hectares of tropical forests and dislocation of two settlements of about 200 families who are currently dependent on the forests for their livelihood. The forests are mainly used for extracting reed – a material used both by traditional artisans and the paper-pulp industry. The potential environmental costs and benefits of the project are identified and approximate estimates of some of these costs are made for items such as carbon sequestration, bio-diversity, and so on, based on similar estimates made elsewhere. These estimated environmental costs are incorporated into the analysis, and the hypothetical estimate of the non-use value, which would make the project's net benefit zero, is estimated under different discount rates. The analysis brings into sharp focus some crucial factors that have a direct bearing on the social trade-off involved in the project choice.


Sign in / Sign up

Export Citation Format

Share Document