Ozonation of a secondary effluent both for fresh water protection and re-use

2006 ◽  
Vol 1 (2) ◽  
Author(s):  
M. Antonelli ◽  
V. Mezzanotte ◽  
C. Nurizzo

49 trials were carried out at pilot scale to evaluate ozonation for polishing a nitrified and filtered effluent discharged in a brook, lying in a recreational protected area whose low and irregular flow provides a negligible dilution. Four ozone doses (3, 5, 7.5 and 10 mg O3/L) were tested and contact time was set at 10 minutes for each of the three contact columns. In most cases, at 3 mg O3/L, residual ozone concentration was below detection limit after 10 minutes contact time. For faecal coliforms and E. coli, log reduction increased from 3 mg O3/L to higher ozone doses, among which no appreciable difference was observed. No improvement in disinfection efficiency was seen for contact times over 10 minutes. Complete disinfection was obtained only in few cases, but final counts complying with the limits for discharge were always met. COD removal was low, while colour removal was significant and clearly increasing from 3 mg O3/L to higher doses. The removal of surfactants slightly increased with increasing dose for non ionic compounds, but not for anionic ones. Data confirmed that slight increases in ozone dose involve the release of bacterial organic matter which partially counterbalance the removal of COD.

1998 ◽  
Vol 38 (12) ◽  
pp. 109-117 ◽  
Author(s):  
V. Lazarova ◽  
M. L. Janex ◽  
L. Fiksdal ◽  
C. Oberg ◽  
I. Barcina ◽  
...  

Advanced disinfection processes (peracetic acid, UV irradiation and ozonation) have been tested and evaluated through bench and pilot scale studies. 3 log removals of total coliforms, faecal coliforms and faecal streptococci were achieved by 10mg/L peracetic acid at a 10min contact time, by UV radiation at 35mW.s/cm2 and by ozone at 5mg/L for 10min contact time. Higher doses are required for virus removal by UV and PAA and especially for highly resistant viruses such as F-specific bacteriophage MS2. Ozonation has the advantage of having a strong effect on all types of bacteriophages and protozoa cysts even when low treatment doses and short contact times are applied. The results of this study demonstrated that evaluation of disinfection efficiency of ozone, UV and PAA depends on the criteria and methods employed. Standard method (plate count) results showed an important disinfection effect on culturability, while results from non-standard methods (respiratory activity and β-galactosidase activity assay) indicated less reduction of viable cells. Moreover, the results confirm that disinfectants act on bacteria in different ways. It has been clearly demonstrated that b-galactosidase activity is affected by PAA while UV treatment has no or very limited effect on the enzyme activity. Even without sunlight reactivation, bacterial regrowth in seawater was observed after disinfection of sewage effluents. This study also shows that the biodegradability of sewage effluent for an E coli strain was affected differently by the oxidative disinfectants ozone and PAA. Biodegradability should therefore be considered when evaluating the total disinfection efficiency.


2011 ◽  
Vol 64 (12) ◽  
pp. 2352-2361 ◽  
Author(s):  
A. Luczkiewicz ◽  
K. Jankowska ◽  
R. Bray ◽  
E. Kulbat ◽  
B. Quant ◽  
...  

The main objective of the study was to assess the potential of three systems (UV irradiation, ozonation, and micro/ultrafiltration) operated in a pilot scale in removal of antimicrobial-resistant fecal bacteria from secondary effluent of the local wastewater treatment plant (700,000 population equivalent). The effectiveness of the processes was analysed using the removal ratio of fecal indicators (Escherichia coli and Enterococcus spp.). The susceptibility of fecal indicators to antimicrobial agents important in human therapy was examined. Resistance to nitrofurantoin and erythromycin was common among enterococci and followed by resistance to fluoroquinolones and tetracycline. Resistance to high-level aminoglycosides and glycopeptides was also observed. E. coli isolates were most frequently resistant to penicillins and tetracycline. The extended-spectrum beta-lactamase-producing E. coli was detected once, after ozonation. Substantial attention should be paid to the E. coli and enterococci resistant to three or more chemical classes of antimicrobials (MAR), which in general constituted up to 15 and 49% of the tested isolates, respectively. Although the applied methods were effective in elimination of fecal indicators (removal efficiency up to 99.99%), special attention has to be paid to the application of sufficient disinfection and operation conditions to avoid selection of antimicrobial resistant bacteria.


2013 ◽  
Vol 68 (12) ◽  
pp. 2638-2644 ◽  
Author(s):  
M. Antonelli ◽  
A. Turolla ◽  
V. Mezzanotte ◽  
C. Nurizzo

The paper is a review of previous research on secondary effluent disinfection by peracetic acid (PAA) integrated with new data about the effect of a preliminary flash-mixing step. The process was studied at bench and pilot scale to assess its performance for discharge in surface water and agricultural reuse (target microorganisms: Escherichia coli and faecal coliform bacteria). The purposes of the research were: (1) determining PAA decay and disinfection kinetics as a function of operating parameters, (2) evaluating PAA suitability as a disinfectant, (3) assessing long-term disinfection efficiency, (4) investigating disinfected effluent biological toxicity on some aquatic indicator organisms (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum), (5) comparing PAA with conventional disinfectants (sodium hypochlorite, UV irradiation). PAA disinfection was capable of complying with Italian regulations on reuse (10 CFU/100 mL for E. coli) and was competitive with benchmarks. No regrowth phenomena were observed, as long as needed for agricultural reuse (29 h after disinfection), even at negligible concentrations of residual disinfectant. The toxic effect of PAA on the aquatic environment was due to the residual disinfectant in the water, rather than to chemical modification of the effluent.


2009 ◽  
Vol 75 (23) ◽  
pp. 7303-7309 ◽  
Author(s):  
Evanly Vo ◽  
Samy Rengasamy ◽  
Ronald Shaffer

ABSTRACT The aim of this study was to develop a test system to evaluate the effectiveness of procedures for decontamination of respirators contaminated with viral droplets. MS2 coliphage was used as a surrogate for pathogenic viruses. A viral droplet test system was constructed, and the size distribution of viral droplets loaded directly onto respirators was characterized using an aerodynamic particle sizer. The sizes ranged from 0.5 to 15 μm, and the sizes of the majority of the droplets were the range from 0.74 to 3.5 μm. The results also showed that the droplet test system generated similar droplet concentrations (particle counts) at different respirator locations. The test system was validated by studying the relative efficiencies of decontamination of sodium hypochlorite (bleach) and UV irradiation with droplets containing MS2 virus on filtering facepiece respirators. It was hypothesized that more potent decontamination treatments would result in corresponding larger decreases in the number of viable viruses recovered from the respirators. Sodium hypochlorite doses of 2.75 to 5.50 mg/liter with a 10-min decontamination period resulted in approximately 3- to 4-log reductions in the level of MS2 coliphage. When higher sodium hypochlorite doses (≥8.25 mg/liter) were used with the same contact time that was used for the dilute solutions containing 2.75 to 5.50 mg/liter, all MS2 was inactivated. For UV decontamination at a wavelength of 254 nm, an approximately 3-log reduction in the level of MS2 virus was achieved with dose of 4.32 J/cm2 (3 h of contact time with a UV intensity of 0.4 mW/cm2), while with higher doses of UV irradiation (≥7.20 J/cm2; UV intensity, 0.4 mW/cm2; contact times, ≥5 h), all MS2 was inactivated. These findings may lead to development of a standard method to test decontamination of respirators challenged by viral droplets.


2005 ◽  
Vol 68 (4) ◽  
pp. 758-763 ◽  
Author(s):  
SCOTT M. RUSSELL ◽  
STEPHEN P. AXTELL

Studies were conducted to compare the effect of sodium hypochlorite (SH) versus monochloramine (MON) on bacterial populations associated with broiler chicken carcasses. In study 1, nominal populations (6.5 to 7.5 log CFU) of Escherichia coli, Listeria monocytogenes, Pseudomonas fluorescens, Salmonella serovars, Shewanella putrefaciens, and Staphylococcus aureus were exposed to sterilized chiller water (controls) or sterilized chiller water containing 50 ppm SH or MON. SH at 50 ppm eliminated all (6.5 to 7.5 log CFU) viable E. coli, L. monocytogenes, and Salmonella serovars; 1.2 log CFU of P. fluorescens; and 5.5 log CFU of S. putrefaciens. MON eliminated all (6.5 to 7.5 log CFU) viable E. coli, L. monocytogenes, S. putrefaciens, and Salmonella serovars and 4.2 log CFU of P. fluorescens. In study 2, chicken carcasses were inoculated with P. fluorescens or nalidixic acid–resistant Salmonella serovars or were temperature abused at 25°C for 2 h to increase the populations of naturally occurring E. coli. The groups of Salmonella serovar–inoculated or temperature-abused E. coli carcasses were immersed separately in pilot-scale poultry chillers and exposed to tap water (controls) or tap water containing 20 ppm SH or 20 ppm MON for 1 h. The P. fluorescens–inoculated group was immersed in pilot-scale poultry chillers and exposed to tap water (controls) or tap water containing 50 ppm SH or 50 ppm MON for 1 h. Carcasses exposed to the SH treatment had nominal increases (0.22 log CFU) in E. coli counts compared with controls, whereas exposure to MON resulted in a 0.89-log reduction. Similarly, average nalidixic acid–resistant Salmonella serovar counts increased nominally by 34% (41 to 55 CFU/ml) compared with controls on carcasses exposed to SH, whereas exposure to MON resulted in an average nominal decrease of 80% (41 to 8 CFU/ml). P. fluorescens decreased by 0.64 log CFU on carcasses exposed to SH and decreased by 0.87 log CFU on carcasses exposed to MON. In study 3, SH or MON was applied to the chiller in a commercial poultry processing facility. E. coli counts (for carcass halves emerging from both saddle and front-half chillers) and Salmonella prevalence were evaluated. Data from carcasses exposed to SH during an 84-day historical (Hist) and a 9-day prepilot (Pre) period were evaluated. Other carcasses were exposed to MON and tested during a 27-day period (Test). E. coli counts for samples collected from the saddle chiller were 25.7, 25.2, and 8.6 CFU/ml for Hist, Pre, and Test, respectively. E. coli counts for samples collected from the front-half chiller were 6.7, 6.9, and 2.5 CFU/ml for Hist, Pre, and Test, respectively. Salmonella prevalence was reduced from 8.7% (Hist + Pre) to 4% (Test). These studies indicate that MON is superior to SH in reducing microbial populations in poultry chiller water.


2005 ◽  
Vol 51 (12) ◽  
pp. 107-110 ◽  
Author(s):  
R.J. Davies-Colley ◽  
R.J. Craggs ◽  
J. Park ◽  
J.P.S. Sukias ◽  
J.W. Nagels ◽  
...  

Advanced pond systems (APS), incorporating high-rate ponds, algal settling ponds, and maturation ponds, typically achieve better and more consistent disinfection as indicated by Escherichia coli than conventional waste stabilisation ponds. To see whether this superior disinfection extends also to enteric viruses, we studied the removal of somatic phages (‘model’ viruses) in a pilot-scale APS treating sewage. Measurements through the three aerobic stages of the APS showed fairly good removal of somatic phage in the summer months (2.2 log reduction), but much less effective removal in winter (0.45 log reduction), whereas E. coli was removed efficiently (>4 logs) in both seasons. A very steep depth-gradient of sunlight inactivation of somatic phage in APS pond waters (confined in silica test tubes) is consistent with inactivation mainly by solar UVB wavelengths. Data for F-RNA phage suggests involvement of longer UV wavelengths. These findings imply that efficiency of virus removal in APS will vary seasonally with variation in solar UV radiation.


2011 ◽  
Vol 63 (9) ◽  
pp. 1997-2003 ◽  
Author(s):  
Annalisa Onnis-Hayden ◽  
Bryan B. Hsu ◽  
Alexander M. Klibanov ◽  
April Z. Gu

A new sand filtration water disinfection technology is developed which relies on the antimicrobial properties of hydrophobic polycations (N-hexylated polyethylenimine) covalently attached to the sand's surface. The efficacy of the filter disinfection process was evaluated both with water spiked with E. coli and with real aqueous effluent from a wastewater treatment plant. For the former, over 7-log reduction in bacterial count was achieved. With real environmental wastewater secondary effluent samples, the E. coli concentration reduction declined to under 2 logs. This reduced inactivation efficiency compared to the model aqueous sample is likely due to the particulate or colloidal matter present that diminishes the contact between the immobilized polycation and the suspended bacteria. Preliminary sand washing methods were tested to assess potential ‘regeneration’ approaches. Potential advantages of the proposed approach over conventional disinfection in terms of eliminating harmful by-products and reducing energy consumption are discussed.


2020 ◽  
pp. 74-83
Author(s):  
Tatchai Pussayanavina ◽  
Thammarat Koottatep ◽  
Le My Dinh ◽  
Sopida Khamyai ◽  
Wattanapong Sangchun ◽  
...  

Demonstrating the operational feasibility of a solar-powered septic tank as an alternative and sustainable sanitation option for communities was presented in this study. The efficiency and technical feasibility of a solar septic tank (SST) were tested and evaluated in pilot scale for treatment of black water from communal toilets. The system consisted of a modified septic tank equipped with a disinfection chamber inside the tank. Solar radiation was collected as a heat source for heating and disinfection. The system could achieve high removal efficiencies of total chemical oxygen demand (TCOD), 5-day biological oxygen demand (BOD5), total solid (TS), and total volatile solid (TVS) of 97%, 94%, 91% and 96%, respectively. The inactivation efficiencies of E. coli and total coliforms in the SST were about 2.2 log reduction. The increased temperature inside the septic tank could help to inactivate pathogens and reduce the environmental issues related to conventional fecal sludge management. In turn, this improved the water quality of groundwater and surface water and minimize health risks. Influence of operational conditions including organic/nutrient loading rate and ratio between TCOD and TKN in the black water on the performance of the SST were discussed.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2162
Author(s):  
Yadwinder Singh Rana ◽  
Philip M. Eberly ◽  
Quincy J. Suehr ◽  
Ian M. Hildebrandt ◽  
Bradley P. Marks ◽  
...  

The effect of moderate-temperature (≤60 °C) dehydration of plant-based foods on pathogen inactivation is unknown. Here, we model the reduction of E. coli O157:H7 as a function of product-matrix, aw, and temperature under isothermal conditions. Apple, kale, and tofu were each adjusted to aw 0.90, 0.95, or 0.99 and inoculated with an E. coli O157:H7 cocktail, followed by isothermal treatment at 49, 54.5, or 60.0 °C. The decimal reduction time, or D-value, is the time required at a given temperature to achieve a 1 log reduction in the target microorganism. Modified Bigelow-type models were developed to determine D-values which varied by product type and aw level, ranging from 3.0–6.7, 19.3–55.3, and 45.9–257.4 min. The relative impact of aw was product dependent and appeared to have a non-linear impact on D-values. The root mean squared errors of the isothermal-based models ranged from 0.75 to 1.54 log CFU/g. Second, we performed dynamic drying experiments. While the isothermal results suggested significant microbial inactivation might be achieved, the dehydrator studies showed that the combination of low product temperature and decreasing aw in the pilot-scale system provided minimal inactivation. Pilot-scale drying at 60 °C only achieved reductions of 3.1 ± 0.8 log in kale and 0.67 ± 0.66 log in apple after 8 h, and 0.69 ± 0.67 log in tofu after 24 h. This illustrates the potential limitations of dehydration at ≤60 °C as a microbial kill step.


2003 ◽  
Vol 3 (4) ◽  
pp. 269-275 ◽  
Author(s):  
V. Mezzanotte ◽  
M. Antonelli ◽  
A. Azzellino ◽  
S. Citterio ◽  
C. Nurizzo

The paper summarises - in terms of bacterial removal and re-growth - the results of a pilot scale study performed on a continuous flow pilot plant, using peracetic acid (PAA) as disinfecting agent. Trials were carried out with increasing doses and contact times (6, 12, 18, 36, 42, 54 min). The paper reports data deriving from the only doses (15 and 25 mg L-1) which were able to ensure the respect of the limits for agricultural re-use, according to Italian law. Disinfection efficiency was comparable for E. coli, TC and FC, and lower for total heterotrophic bacteria (THB), and clearly grew with increasing Cát values. The effect of contact time was greater at the lower doses. Microbial counts, performed by both traditional methods and flow cytometry, immediately and 6 hours after the sample collection (PAA was previously inactivated by sodium thiosulphate and bovine catalase), showed that no appreciable re-growth took place after 6 hours for coliform group bacteria. THB formed a slightly lower number of colonies immediately after collection than after 6 hours. The slight variations observed after 6 hours were the result of the recovered ability of forming colonies and of the lysis of some of the residual bacteria, as it was shown by flow cytometry.


Sign in / Sign up

Export Citation Format

Share Document