Effects of several water quality parameters on arsenic removal by coagulation: laboratory experiments and a pilot-scale study

2008 ◽  
Vol 3 (3) ◽  
Author(s):  
D. Laky ◽  
B. László ◽  
I. Licskó

In laboratory experiments a traditional drinking water treatment method, coagulation/flocculation followed by solid/liquid phase separation has been applied in order to decrease arsenic concentration below 10 μg/L (which is the new Hungarian standard for arsenic). The goal of the research work was to examine the transition of the dissolved arsenic to solid form, to determine the factors which have significant effect on arsenic removal efficiency. The organic content of the water highly affected the arsenic removal process. The difference in the required coagulant dosage can be order of one magnitude depending on the organic content of the water. The phosphorous content also increases the required coagulant dose, since ferric phosphate precipitates are formed, decreasing the amount of coagulant available for arsenic removal. pH also proved to have significant influence when experiments were carried out at wide pH range. However, under more realistic conditions (pH is between 7.5 and 8), the effect of pH was not that significant. The inorganic carbon content at some extent favors the liquid/solid transition of arsenate, since it contributes to the buffering capacity of the water, therefore enhances the metal hydroxide formation process. However, the excess inorganic carbon has disadvantageous effect, since it competes with the arsenate ions for the free sites of metal hydroxides. Two oxidants (chlorine and potassium permanganate) and two coagulants (ferric chloride and aluminum sulfate) were studied in pilot scale experiments. The pilot plant was operated at Hajdúbagos, where the arsenic, iron and manganese concentration of the raw water is above the standard. In the experiments it was found the potassium permanganate + ferric chloride combination was the most efficient.

2014 ◽  
Vol 4 (02) ◽  
Author(s):  
Rina S. Soetopo ◽  
Sri Purwati ◽  
Henggar Hardiani ◽  
Mukharomah Nur Aini ◽  
Krisna Adhitya Wardhana

A continuous pilot scale study has been conducted to investigate the effectiveness of anaerobic digestion of biological sludge. The sludge has a total solid content of 0.53% - 1.1%, pH of 7.20 to 7.32. Its organic content is about 97 %, The research were conducted in two stages, which are acidification (performed in 3 m3 the Continously Stirred Tank Reactor/CSTR at pH of 5.5 to 6.0) and methanation (performed in 5 m3 the Up Flow Anaerobic Sludge Blanket/UASB reactor at pH 6.5 to 7.0). The retention time (RT) was gradually shortened from 6 days to 1 day for acidification and from 8 days to 2 days for methanation. The results showed that operating the CSTR at the RT of 1 day and the organic loading of 8.23 g Volatile Solid (VS)/m3.day could produce Volatile Fatty Acid (VFA) at an average value of 17.3 g/kg VS.day. Operating the UASB reactor at the RT of 2 days and the organic loading (Chemical Oxygen Demand/COD) of 2.4 kg COD/m3.day could produce biogas at an average value of 66.3 L/day, with an average methane content of 69.9%, methane rate of 0.17 L CH4/g COD reduction or 19.06 L CH4/kg VS. Furthermore, methanation could reduce COD at an average value of 51.2 %, resulting in the effluent average value of COD filtrate and COD total of 210.1 mg/L and 375.2 mg /L, respectively.Keywords: acidification, methanation, CSTR, UASB, biogas ABSTRAKPercobaan digestasi anaerobik lumpur IPAL biologi industri kertas secara kontinyu skala pilot telah dilakukan di industri kertas dengan tujuan mengkaji efektivitas proses digestasi anaerobik dalam mengolah lumpur tersebut. Lumpur yang digunakan memiliki total solids sekitar 0,53% – 1,1%, pH netral (7,20 – 7,32) dengan komponen utama senyawa organik sekitar 97%. Percobaan dilakukan dalam dua tahap yaitu asidifikasi dalam reaktor CSTR berkapasitas 3 m3 pada pH 5,5 – 6,0 dan metanasi dalam reaktor UASB berkapasitas 5 m3 pada pH 6,5 – 7,0. Percobaan dilakukan dengan waktu retensi yang dipersingkat secara bertahap dari 6 hari ke 1 hari untuk proses asidifikasi dan dari 8 hari ke 2 hari untuk proses metanasi. Hasil percobaan menunjukkan bahwa pengoperasian reaktor CSTR dengan waktu retensi 1 hari dan beban organik 8,3 g VS/m3.hari dapat menghasilkan VFA rata-rata 17,3 g/kg VS.hari dengan kisaran 8,36 – 30,59 g/kg VS.hari, sedangkan pengoperasian reaktor UASB pada waktu retensi 2 hari dan beban organik 2,4 kg COD/m3.hari dapat menghasilkan biogas rata-rata 66,3 L/hari dengan kadar metana rata-rata 69,9% atau 0,17 L CH4/g COD reduksi atau 19,06 L CH4/kg VS. Selain itu proses metanasi dapat menurunkan COD terlarut rata-rata 51,2%, dengan konsentrasi efluen COD terlarut  rata-rata 210,1 mg/L dan COD total rata-rata 375,2 mg/L.Kata kunci: asidifikasi, metanasi, CSTR, UASB, biogas


2019 ◽  
Vol 70 (7) ◽  
pp. 2330-2334
Author(s):  
Mihaela Ciopec ◽  
Adina Negrea ◽  
Narcis Duteanu ◽  
Corneliu Mircea Davidescu ◽  
Iosif Hulka ◽  
...  

Arsenic content in groundwater�s present a wide range of concentration, ranging from hundreds of micrograms to thousands of micrograms of arsenic per litter, while the maximum permitted arsenic concentration established by World Health Organization (WHO) is 10 mg L-1. According to the WHO all people, regardless of their stage of development and their social economic condition, have the right to have access to adequate drinking water. The most efficient and economic technique used for arsenic removal is represented by adsorption. In order to make this remediation technique more affordable and environmentally friendly is important to new materials with advance adsorbent properties. Novelty of present paper is represented by the usage of a new adsorbent material obtained by physical - chemical modification of Amberlite XAD polymers using crown ethers followed by iron doping, due to well-known affinity of arsenic for iron ions. Present paper aims to test the obtained modified Amberlite polymer for arsenic removal from real groundwater by using adsorption in a fixed bed column, establishing in this way a mechanism for the adsorption process. During experimental work was studied the influence of competing ions from real water into the arsenic adsorption process.


1995 ◽  
Vol 32 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Seni Karnchanawong ◽  
Jaras Sanjitt

Two pilot-scale studies were comparatively conducted under tropical conditions during December 1992 to September 1993. One study involved facultative ponds(FP) and the others water spinach ponds(SP). Four rectangular concrete ponds, 0.8 m × 2.4 m × 1.1 m (width × length × depth), were employed to treat the Chiang Mai University campus wastewater. Water spinach (Ipomoea aquatica) was planted in two of the ponds. The influent characteristics noted showed a low organic content, i.e. BOD 25.4-29.9 mg/l, with BOD:N ratio around 1:1. The investigations were conducted using the following hydraulic retention times (HRT): 1.6, 2, 2.7, 4, 8 and 16 d. The results showed that the BOD, COD and SS mass removal rates increased as the mass loading rates increased and the SP was significantly more effective in reducing the organic content than the FP. No relationship was found between TN mass removal and the loading rates. However, the TP mass removal rates in the SP and the FP were rather low and were considered to be insignificant. It was observed that SS accumulated in the water spinach root systems which tended to act as a strainer. This process led to plant growth inhibition and finally die-off. The average water spinach growth rates varied from 37 to 107 g wet wt./(m2.d) and no relationship was established between the growth rates and the HRT.


2020 ◽  
Vol 725 ◽  
pp. 138351 ◽  
Author(s):  
Jie Ge ◽  
Biswarup Guha ◽  
Lee Lippincott ◽  
Stanley Cach ◽  
Jinshan Wei ◽  
...  

1978 ◽  
Vol 5 (1) ◽  
pp. 83-97 ◽  
Author(s):  
Robert D. Cameron

The use of cheap, locally available peat as a treatment method for landfill leachate was investigated by passing leachate through plexiglass columns filled with an amorphous-granular peat. Preliminary adjustment of pH showed that reducing pH to 4.8 dramatically reduced adsorption. Increasing the pH to 8.4, metal removal was increased owing to filtration of precipitated metals. The best adsorption of metals occurred at the 'natural' pH of 7.1. Manganese was found to be the limiting pollutant. At the 0.05 mg/ℓ maximum acceptable manganese concentration 94% of the total metals were removed, requiring 159 kg of peat per 1000 ℓ of leachate.Resting the peat for 1 month did significantly increase removal capacity.Desorption of some contaminants occurred when water was percolated through the peat. The desorption test effluent was not toxic to fish although iron, lead and COD (chemical oxygen demand) exceeded acceptable values.Chemical pretreatment using lime and ferric chloride achieved significant iron, manganese and calcium removals. Chemical pretreatment followed by peat adsorption offered no advantage other than reducing toxicity to fish.Peat treatment alone was effective in reducing concentrations to a level that was non-toxic to fish.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 805
Author(s):  
Saif Ullah Khan ◽  
Rumman Zaidi ◽  
Feroz Shaik ◽  
Izharul Haq Farooqi ◽  
Ameer Azam ◽  
...  

Nanotechnology has received much attention in treating contaminated waters. In the present study, a facile co-precipitation method was employed to synthesize a novel iron and magnesium based binary metal oxide using a stoichiometrically fixed amount of FeNO3.9H2O and MgNO3.6H2O in a proportion of molar concentration 1:1 and was later evaluated in removing As (III) from contaminated waters. Characterization of the prepared nanomaterial was done using X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX) and ultraviolet–visible spectrophotometry (UV-VIS). Experimental studies on batch scale were carried out, examining the effect of varying initial concentrations of metal, adsorbent dosage, application time and initial pH on removal efficiency. Arsenic removal increased on increasing adsorbent dosage (0.1–1 g/L) but trend reversed on increasing initial arsenic concentration attaining qmax of 263.20 mg/g. Adsorption was quite efficient in pH range 4–8. Freundlich fitted better for adsorption isotherm along with following Pseudo-2nd order kinetics. The reusability and effect of co-existing ions on arsenic adsorption, namely SO42−, CO32− and PO43− were also explored with reusability in 1st and 2nd cycles attained adsorptive removal up to 77% and 64% respectively. The prepared nano-adsorbent showed promising results in terms of high arsenic uptake (qmax of 263.20 mg/g) along with facile and cost-effective synthesis. Thus, the co-precipitation technique used in this work is a simple one step procedure without any use of any precursor as compared to most of the other procedures used for synthesis.


2013 ◽  
Vol 4 (2) ◽  
pp. 77-89 ◽  
Author(s):  
Matthijs Bonte ◽  
Boris M. Van Breukelen ◽  
Pieter J. Stuyfzand

Aquifer thermal energy storage (ATES) uses groundwater to store energy for heating or cooling purposes in the built environment. This paper presents field and laboratory results aiming to elucidate the effects that ATES operation may have on chemical groundwater quality. Field data from an ATES site in the south of the Netherlands show that ATES results in chemical quality perturbations due to homogenisation of the initially present vertical water quality gradient. We tested this hypothesis by numerical modelling of groundwater flow and coupled SO4 transport during extraction and injection of groundwater by the ATES system. The modelling results confirm that extracting groundwater from an aquifer with a natural quality stratification, mixing this water in the ATES system, and subsequent injection in the second ATES well can adequately describe the observation data. This mixing effect masks any potential temperature effects in typical low temperature ATES systems (<25 °C) which was the reason to complement the field investigations with laboratory experiments focusing on temperature effects. The laboratory experiments indicated that temperature effects until 25 °C are limited; most interestingly was an increase in arsenic concentration. At 60 °C, carbonate precipitation, mobilisation of dissolved oxygen concentration, K and Li, and desorption of trace metals like As can occur.


2018 ◽  
Vol 19 (3) ◽  
pp. 855-863 ◽  
Author(s):  
T. Miyoshi ◽  
Y. Takahashi ◽  
T. Suzuki ◽  
R. Nitisoravut ◽  
C. Polprasert

Abstract This study investigated the performance of a hybrid membrane filtration system to produce industrial water from highly-colored surface water. The system consists of a membrane filtration process with appropriate pretreatments, including coagulation, pre-chlorination, and anion exchange (IE) process. The results of the pilot-scale experiments revealed that the hybrid system can produce treated water with color of around 5 Pt-Co, dissolved manganese concentration of no more than 0.05 mg/L, and a silt density index (SDI) of no more than 5 when sufficient coagulant and sodium hypochlorite were dosed. Although the IE process effectively reduced the color of the water, a moderate increase in the color of the IE effluent was observed when there was a significant increase in the color of the raw water. This resulted in a severe membrane fouling, which was likely to be attributed to the excess production of inorganic sludge associated with the increased coagulant dosage required to achieve sufficient reduction of color. Such severe membrane fouling can be controlled by optimising the backwashing and relaxation frequencies during the membrane filtration. These results indicate that the hybrid system proposed is a suitable technology for treating highly-colored surface water.


2010 ◽  
Vol 45 (3) ◽  
pp. 317-326 ◽  
Author(s):  
Murat Eyvaz ◽  
Hatice Deniz ◽  
Tuğrul S. Aktaş ◽  
Ebubekir Yüksel ◽  
Ahmet M. Saatçi

Abstract Pre-ozonation–coagulant interactions effects in relation to the coagulant type and dosage in direct filtration of surface waters were investigated. The performance of the process was evaluated by monitoring the effluent quality and head loss development through the filter bed. Two identical pilot scale filter columns filtering the same raw water were operated in parallel. The raw water was brought from Ömerli Reservoir in Istanbul. Before filtering, the raw water flow was split into two equal flows. One of the streams was pre-ozonated and the other was aerated using contact chambers with equal volumes equipped with same number and type of diffusers. In coagulation experiments, one of the filters was operated using aluminum sulfate as a coagulant while the other one was run with ferric chloride. For similar filter run times, the effluent quality was always better with pre-ozonation compared to aeration. It was also observed that, aluminum sulfate application gave more favorable results for both particle and turbidity removal compared to ferric chloride. Ives’ filterability index which incorporates the important filtration design parameters such as: effluent quality, the headloss and the velocity of filtration into a dimensionless number was used for the comparison of the experimental results.


2017 ◽  
Vol 77 (2) ◽  
pp. 364-374 ◽  
Author(s):  
Azize Ayol ◽  
Ozgun Tezer ◽  
Alim Gurgen

Abstract Sludges produced in biological wastewater treatment plants have rich organic materials in their characteristics. Recent research studies have focused on the energy recovery from sludge due to its high organic content. The gasification process is a thermal conversion technology transforming the chemical energy contained in a solid fuel into thermal energy and electricity. The produced syngas as a mixture of CO, CH4, H2 and other gases can be used to generate electrical energy. The gasification of yeast industry sludge has been experimentally evaluated in a pilot scale downdraft-type gasifier as a route towards the energy recovery. The gasifier has 20 kg biomass/h fuel capacity. During gasification, the temperature achieved was more than 1,000°C in the gasifier, and then the syngas was transferred to the gas engine to yield the electricity. A load was connected to the grid box and approximately 1 kWh electrical power generation for 1 kg dry sludge was determined. The characteristics of residuals – ash, glassy material – were also analyzed. It was found that most of the heavy metals were fixed in the glassy material. Experimental results showed that the yeast industry sludge was an appropriate material for gasification studies and remarkable energy recovery was obtained in terms of power production by using syngas.


Sign in / Sign up

Export Citation Format

Share Document