Treatment of Log Yard Runoff in an Aerobic Trickling Filter

2004 ◽  
Vol 39 (3) ◽  
pp. 230-236 ◽  
Author(s):  
Christine Woodhouse ◽  
Sheldon J.B. Duff

Abstract Contaminated stormwater runoff from log yards is generated when precipitation comes into contact with wood, woody debris and equipment at outdoor wood sorting, processing and storage facilities. Nine runoff samples collected at a sawmill had biochemical oxygen demand (BOD), chemical oxygen demand (COD), tannins and lignin (T+L), and total suspended solids (TSS) levels ranging from 25 to 745 mg/L, 125 to 4610 mg/L, 10 to 1505 mg/L, and 65 to 2205 mg/L, respectively. Six samples were acutely toxic (EC50 <100%) based on the Microtox assay. The samples were effectively treated using a laboratory-scale, attached microbial growth reactor. Treatment for 24 hours at 34°C resulted in substantial reductions in BOD (94–100%), COD (86–93%) and T+L (91–97%). Near complete removal of acute toxicity and colour were also observed. Twenty-four-hour treatment at lower temperatures, 24 and 5 C, reduced BOD concentrations by 97 and 76%, COD by 91 and 64%, and T+L by 95 and 67%, respectively.

1987 ◽  
Vol 19 (12) ◽  
pp. 265-271
Author(s):  
P. R. Thomas ◽  
H. O. Phelps

The investigation was based on two facultative stabilization ponds initially designed to operate in parallel, and now receive wastewater in excess of their capacities from a fast expanding housing estate in the Caribbean Island of Trinidad. Because of the deterioration of the effluent quality relative to acceptable standards, an attempt was made to upgrade the ponds using water hyacinths at the early stages. However, from the results, it was clear that the introduction of water hyacinths in the test pond did not lead to any substantial improvement in the effluent because of the high loading on the pond. Therefore the ponds were modified to operate in series with surface aerators installed in the first pond. Initially, the effluent quality was monitored in terms of total suspended solids, volatile suspended solids, biochemical oxygen demand, faecal coliform bacteria, pH and dissolved oxygen with aeration in the first pond and no aquatic plants in the second pond. Although there was a significant improvement in the effluent quality, the values remained above the standards. As a result, water hyacinths were introduced in the second pond and the effluent quality monitored together with aeration in the first pond. The effluent quality improved with total suspended solids and biochemical oxygen demand values both as low as 10 mg/l in certain months, but additional treatment was needed to reduce faecal conforms.


Author(s):  
R. Sandhiya ◽  
K. Sumaiya Begum ◽  
D. Charumathi

<p><strong>Objective: </strong>The objectives of the present study were a) to isolate and screen bacteria for dye removal from synthetic solution b) to optimize various variables such as pH, static/shaking and initial dye concentration on degradation of triphenyl methane dyes namely basic violet 3 and basic green 4 by isolated <em>Staphylococcus aureus</em> c) to analyse enzymes involved in the biodegradation of triphenylmethane dyes d) to treat real leather dyeing wastewater with newly isolated strain of <em>Staphylococcus aureus </em>e) to characterize untreated and treated leather dyeing wastewater f) to study the effects of real and treated effluent on plants and <em>Rhizobium</em>.<strong></strong></p><p><strong>Methods: </strong>Isolation of bacteria from sludge was carried out by spread plate method and the bacteria was identified by morphological and biochemical characterization. The isolated bacterium was screened for dye decolorization potential of triphenylmethane dyes basic violet 3 and basic green 4 The effects of parameters were studied by varying pH (from 3 to 9), temperature (from 15-45 °C), and initial dye concentration (from 10-500 mg/l). The enzyme involved in biodegradation was studied in intracellular extract. Real leather dyeing wastewater was treated with the bacteria and characterized. The treated wastewater was tested on plants and <em>Rhizobium </em>for toxicity. <strong></strong></p><p><strong>Results: </strong>Dye decolorization potential of bacteria <em>Staphylococcus aureus</em> isolated from wastewater for leather dyes basic violet 3 and basic green 4 were evaluated. Dye decolorization using bacteria was found to be dependent on physicochemical parameters (shaking, pH and initial dye concentration). Enzymes NADH-DCIP reductase and MG reductase were found to play dominant role during biodegradation of synthetic dyes. Application oriented studies using growing bacteria in pure cultures were carried out with leather dyeing wastewater collected from DKS prime tanners. Analysis of raw leather dyeing wastewater showed high pollution load in terms of color, Total solids, Total suspended solids, Total dissolved solids and Biological oxygen demand whereas the leather dyeing wastewater treated with pure culture of <em>Staphylococcus aureus</em> showed considerable decrease in Total solids, Total suspended solids, Total dissolved solids and Biological oxygen demand values which were within the permissible limits. Phytotoxicity and microbial toxicity studies confirmed the non-toxic nature of treated leather dyeing wastewater. <strong></strong></p><p><strong>Conclusion: </strong>Our study proved that <em>Staphylococcus aureus</em> can serve as a potential remediation agent for the treatment of leather dyeing wastewater.</p>


2014 ◽  
Vol 34 (4) ◽  
pp. 770-779 ◽  
Author(s):  
Fábio Orssatto ◽  
Marcio A. Vilas Boas ◽  
Ricardo Nagamine ◽  
Miguel A. Uribe-Opazo

The current study used statistical methods of quality control to evaluate the performance of a sewage treatment station. The concerned station is located in Cascavel city, Paraná State. The evaluated parameters were hydrogenionic potential, settleable solids, total suspended solids, chemical oxygen demand and biochemical oxygen demand in five days. Statistical analysis was performed through Shewhart control charts and process capability ratio. According to Shewhart charts, only the BOD(5.20) variable was under statistical control. Through capability ratios, we observed that except for pH the sewage treatment station is not capable to produce effluents under characteristics that fulfill specifications or standard launching required by environmental legislation.


2020 ◽  
Vol 9 (6) ◽  
pp. e183963748
Author(s):  
Rafael Souza Leopoldino Nascimento ◽  
Ludymyla Marcelle Lima Silva ◽  
Lucas Periard ◽  
Anibal da Fonseca Santiago

The technology of microalgae photobioreactors and illuminated by LEDs has been widely studied for the treatment of wastewater. However, sunlight is a free resource and should be taken advantage of. But the question remains whether photobioreactors illuminated by natural (sunlight) light in combination with artificial light can have greater operational stability or greater performance when compared to systems illuminated only by artificial light. In this context, continuous flow photobioreactors illuminated by Light Emitting Diodes (LEDs) combined, or not, with sunlight were operated and had their performance evaluated. The variables analyzed were pH, OD, chemical oxygen demand (COD), chlorophyll - a and total suspended solids. The photobioreactors were effective for removing organic matter, with 75 ± 15% in the photobioreactor illuminated by LED and 65 ± 10% in the photobioreactor illuminated by sunlight and LED. The results showed that the use of combined lighting favors the production of dissolved oxygen and ensures greater operational stability in the removal of carbonaceous organic matter.


2017 ◽  
Vol 16 (1) ◽  
pp. 75-85
Author(s):  
O. E. OMOFUNMI ◽  
J. K. . ADEWUMI ◽  
A. F. ADISA ◽  
S. O. ALEGBELEYE

Catfish production is one of the largest segments of fish culture in Lagos State, Nigeria. However, catfish effluents, which usually deteriorate the environment, need to be controlled. The effect of paddle-wheel aerator in catfish effluent was evaluated. The volume of catfish effluent was collected into two basins and diluted at given ratios. The paddle-wheel aerator was installed in one basin, while another basin served as control in determining the impact of paddle wheel aerator on catfish effluents. Water qualities such as Total Suspended Solids (TSS), Total Nitrogen (TN), Total Phosphorus (TP), Total Ammonia (TNH3) and Nitrite (NO2-N) and Biochemical oxygen demand (BOD5) examined and ana-lysed. Results indicated that paddle-wheel aerator reduced TSS (24.4±1.5 %), TN2-N (53.3±1.2 %) , TNH3-N (65.2±1.2 %) , NO2-N (97.1±1.1 %) , TP (61.8±1.1 %) and BOD5 (54 ±1.5 %). com-pared with natural purification 33.9±1.6 % of TSS, 22.7±1.4 % of TN2-N, 29.3±1.6 % of TNH3-N, 53.9±1.2 % of NO2-N, 21.6±1.5 % of TP and 15.4±1.6 % of BOD5 at the same dilution ratio There were significant different (P ≤0.05) between paddle wheel aerator and natural purification in concen-trations reduction. The paddle wheel aerator was found to be relevant in the water quality improve-ment and thus recommend for small and medium scale fish farmers in controlling effluents.


2019 ◽  
Vol 6 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Veymar G. Tacias-Pascacio ◽  
Abumalé Cruz-Salomón ◽  
José H. Castañón-González ◽  
Beatriz Torrestiana-Sanchez

Background: Wet coffee processing consists of the removal of the pulp and mucilage of the coffee cherry. This process generates a large amount of acidic wastewater which is very aggressive to the environment because of its high content of recalcitrant organic matter. Therefore, treatment is necessary before discharge to water bodies. Because of this reason, this study aimed to evaluate the organic matter removal efficiency in an Anaerobic Baffled Bioreactor (ABR) coupled to a Microfiltration Membrane (MF) system as a new eco-friendly option in the treatment of wet Coffee Processing Wastewater (CPWW). Methods: Two systems (S1 and S2) were evaluated at Hydraulic Retention Times (HRT) of 59 h and 83 h, respectively. Both systems were operated at mesophilic conditions, at a Transmembrane Pressure (TMP) of 50 kPa during 1800 h. Results: The S2 generated higher organic matter removal efficiency, reaching removal values of turbidity of 98.7%, Chemical Oxygen Demand (COD) of 81%, Total Solids (TS) of 72.6%, Total Suspended Solids (TSS) of 100%, and Total Dissolved Solids (TDS) of 61%, compared with the S1. Conclusion: The S2 represents a new eco-friendly alternative to treat CPWW and reduce its pollutant effect.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1445 ◽  
Author(s):  
Michał Marzec ◽  
Krzysztof Jóźwiakowski ◽  
Anna Dębska ◽  
Magdalena Gizińska-Górna ◽  
Aneta Pytka-Woszczyło ◽  
...  

In this paper, the pollutant removal efficiency and the reliability of a vertical and horizontal flow hybrid constructed wetland (CW) planted with common reed, manna grass, and Virginia mallow were analyzed. The wastewater treatment plant, located in south-eastern Poland, treated domestic sewage at an average flow rate of 2.5 m3/d. The tests were carried out during five years of its operation (2014–2018). The following parameters were measured: biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, total nitrogen, and total phosphorus. The results showed that more than 95% of BOD5, COD, and total phosphorus was removed in the tested CW system. The average effectiveness of removal of total suspended solids and total nitrogen exceeded 86%. A reliability analysis performed using the Weibull probability model showed that the removal reliability in the tested CW was very high for BOD5, COD, total suspended solids, and total phosphorus (100%). The probability that the total nitrogen concentration in the treated effluents would reach the limit value (30 mg/L) established for effluents discharged from a treatment plant of less than 2000 PE (population equivalent) to standing waters was 94%. The values of all the pollution indicators in wastewater discharged to the receiver were significantly lower than the limit values required in Poland. The investigated hybrid CW system with common reed, manna grass, and Virginia mallow guaranteed stable low values of BOD5, COD, total suspended solids, and total phosphorus in the treated wastewater, which meant it was highly likely to be positively evaluated in case of an inspection.


2018 ◽  
Vol 78 (9) ◽  
pp. 1879-1892 ◽  
Author(s):  
Md Khalekuzzaman ◽  
Muhammed Alamgir ◽  
Mehedi Hasan ◽  
Md Nahid Hasan

Abstract In this research, a hybrid anaerobic baffled reactor (HABR) configuration was proposed consisting of a front sedimentation chamber and four regular baffled chambers followed by two floated filter media chambers for the treatment of domestic wastewater. Performance comparison of uninsulated and insulated HABRs was carried out operating at warm temperature (18.6–37.6 °C) under variable HRTs (30 h and 20 h). The study suggests that almost similar chemical oxygen demand (91% vs 88%), total suspended solids (90% vs 95%), turbidity (98% vs 97%), and volatile suspended solids (90% vs 93%) removal efficiencies were obtained for uninsulated and insulated HABRs. Higher removal of total nitrogen (TN) of 41%, NH4+-N of 44%, and NO3−-N of 91% were achieved by the insulated HABR compared to TN of 37%, NH4+-N of 36%, and NO3−-N of 84% by the uninsulated HABR, whereas lower PO43− removal efficiency of 17% was found in the insulated HABR compared to 24% in the uninsulated HABR. This indicated insulation increased nitrogen removal efficiencies by 4% for TN, 8% for NH4+-N and 7% for NO3−-N, but decreased PO43−removal efficiency by 7%.


2008 ◽  
Vol 58 (5) ◽  
pp. 1071-1077
Author(s):  
Bidhan C. Bag ◽  
Makireddi Sai ◽  
Mahavir P. Kaushik ◽  
Krishnamurthy Sekhar ◽  
Chiranjib Bahttacharya

Coagulation is one of the most important physicochemical treatment steps in industrial wastewater to reduce the suspended and colloidal materials responsible for colour and turbidity of the wastewater. The manufacturing plant of N,N′-Dichloro bis (2,4,6-trichlorophenyl) urea (CC2) produces wastewater containing pyridine, acetic acid and diphenyl urea (DPU). The wastewater also contains lot of suspended solids like CC2 and various poly-aromatic compounds. In our present investigation, our basic aim was to find an effective coagulation process for the pretreatment of wastewater discharged from the CC2 plant. Studies were conducted to find out a suitable and effective coagulant for pretreatment of this wastewater. Various coagulating agents such as alum, ferric chloride, sodium carboxymethyl cellulose (Na-CMC) were used. Alum was found to be the most effective coagulant. Coagulation of the wastewater resulted in the total suspended solids (TSS) removal in the range of 92–94% and chemical oxygen demand (COD) removal in the range of 59 to 65% at a dose of 500 mg L−1 of alum at a pH ≥ 7.0. After coagulation the concentration of pyridine in wastewater was found to be reduced by 10.0% and that of DPU 40–45% with a dosage of 500 mg L−1 alum.


Sign in / Sign up

Export Citation Format

Share Document