Presence and formation of disinfection by-products in Cairo residential water supply

2009 ◽  
Vol 9 (2) ◽  
pp. 113-120 ◽  
Author(s):  
E. H. Smith ◽  
K. E. El-Deen

A sampling program was conducted in a residential community in Cairo, Egypt in order to determine the presence of chlorine disinfection by-products (DBPs) in treated water and to observe the impact of the distribution system on DBP levels. Five campaigns were conducted over a 15-month period during 2005–2006. Trihalomethanes (THMs) and haloacetic acids (HAAs) exceeded local and international limits depending upon the season. Tap water concentrations of THMs were considerably higher in summer than during the rest of the year. In the Summer 2005 event, the average for the 20 tap water locations was 158 μg/l Total-THMs, well in excess of the U.S. EPA limit of 80 μg/L and the current Egyptian standard of 100 μg/l; all 20 locations exceeded the 100 μg/l limit. For the following event in late Fall 2005, the average dropped to 84 μg/l with 11 and 6 sites exceeding the U.S. EPA and Egyptian limits, respectively. HAA levels tended to be complementary to Total-THM values in that they were lower in summer but higher during fall and spring. The U.S. EPA limit on a select set of 5 HAAs (HAA5) is 60 μg/l (Egypt does not currently regulate HAAs). The average for HAA5 in the Summer 2005 event was 52 μg/l with 8 of the 20 tap samples equalling or exceeding the 60 μg/l standard. By contrast, in Fall 2005, the HAA5 average increased to 89 μg/l, with 15 of 20 sites exceeding the limit. THM and HAA concentrations generally increased with distance from the WTP along a targeted distribution main, while chlorine and natural organic matter tended to decrease.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2335
Author(s):  
Gabriella Pinto ◽  
Sabrina De Pascale ◽  
Maria Aponte ◽  
Andrea Scaloni ◽  
Francesco Addeo ◽  
...  

Plant polyphenols have beneficial antioxidant effects on human health; practices aimed at preserving their content in foods and/or reusing food by-products are encouraged. The impact of the traditional practice of the water curing procedure of chestnuts, which prevents insect/mould damage during storage, was studied to assess the release of polyphenols from the fruit. Metabolites extracted from pericarp and integument tissues or released in the medium from the water curing process were analyzed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and electrospray-quadrupole-time of flight-mass spectrometry (ESI-qTOF-MS). This identified: (i) condensed and hydrolyzable tannins made of (epi)catechin (procyanidins) and acid ellagic units in pericarp tissues; (ii) polyphenols made of gallocatechin and catechin units condensed with gallate (prodelphinidins) in integument counterparts; (iii) metabolites resembling those reported above in the wastewater from the chestnut curing process. Comparative experiments were also performed on aqueous media recovered from fruits treated with processes involving: (i) tap water; (ii) tap water containing an antifungal Lb. pentosus strain; (iii) wastewater from a previous curing treatment. These analyses indicated that the former treatment determines a 6–7-fold higher release of polyphenols in the curing water with respect to the other ones. This event has a negative impact on the luster of treated fruits but qualifies the corresponding wastes as a source of antioxidants. Such a phenomenon does not occur in wastewater from the other curing processes, where the release of polyphenols was reduced, thus preserving the chestnut’s appearance. Polyphenol profiling measurements demonstrated that bacterial presence in water hampered the release of pericarp metabolites. This study provides a rationale to traditional processing practices on fruit appearance and qualifies the corresponding wastes as a source of bioactive compounds for other nutraceutical applications.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 321-328 ◽  
Author(s):  
C. Zwiener ◽  
T. Glauner ◽  
F.H. Frimmel

Chlorination and ozonation experiments under conditions close to drinking water treatment were carried out with two different tap waters with low DOC content and water from a bog lake with high natural organic matter content. THM formation was low and in the range of 10 μg/L. Derivatization with dinitrophenylhydrazine and HPLC/tandem mass spectrometry were applied to measure carbonyl DBPs by precursor ion scans at m/z 163 for aldehydes and at m/z 182 for dicarbonyls. Formaldehyde, acetaldehyde, glyoxal, and methylglyoxal were formed by chlorination and ozonation. Ozonation produced the highest levels of carbonyls, in particular in the tap water samples. A strategy for structure suggestion and identification of unknown compounds on the basis of collision-induced dissociation (CID) mass spectra (MS) is given. The resulting structures are carbonyls with additional hydroxy and carboxy groups and serve for choice or synthesis of standard compounds for further identification. The possibilities and limits of compound identification are discussed.


2009 ◽  
Vol 9 (4) ◽  
pp. 413-421
Author(s):  
C. Beaulieu ◽  
M. J. Rodriguez ◽  
J.-B. Sérodes

Little information is available on the evolution of remaining organic matter (ROM) in a water distribution system (WDS) and its impact on the generation of disinfection by-products (DBPs). This research involves the characterization, through sample fractionation processes and experimental chlorination tests, of the reactivity of DBP precursors occurring within a WDS. The study is based on samples collected in various locations of a WDS during a complete year. For each sample, six fractions were generated to determine their potential for formation of trihalomethanes (THMs) and haloacetic acids (HAAs). Fractionation processes on ROM demonstrated that the spatial behavior of precursors for THMs differs from that for precursors of HAAs. In addition, experimental chlorination tests showed that the reactivity of the investigated fractions, in terms of DBP formation potential (DBPfp), was different from each other according to location in the WDS. DBPfp for the studied fractions changed drastically during water treatment. However, changes of DBPfp for fractions were relatively low between the beginning and the extremity of the distribution system. Since the results of this research confirm that the ability to produce DBPs is related to the nature of the fractions, they could be useful to evaluate the impact of re-chlorination on DBP formation in a WDS.


2021 ◽  
Author(s):  
Taoqin Chen ◽  
Jinzhe Li ◽  
Longqian Xu ◽  
Dong Zhang ◽  
Zheng Wang ◽  
...  

Abstract The occurrence an d infestations of chlorine-resistant invertebrates in drinking water distributions have attracted concerns on water quality in China, making effective deactivation imperative. This study presents a no vel strategy for nematode ( Caenorhabditis elegans ) deactivation using peroxymonosulfate (PMS)/UV-C. The results indicated that 100% deactivation efficiency was obtained under optimal conditions. An acidic pH and 0.25 mg/L Fe(II) were beneficial to the PMS/UV-C-triggered deactivation of nematodes. A mechanism study demonstrated that was activated by UV-C to produce · OH and · SO 4 - , which resulted in oxidative stress and stimulated the occurrence of cell apoptosis, leading to nematode deactivation. The results reveal PMS/UV-C as an alternative to chlorination in water treatment plants (WTP) or an emergency application when chlorine-resistant invertebrates breed in a second-supply water tank, is a promising strategy for disinfection. This approach afforded the advantages of avoiding the production of chlorine disinfection by-products (DBP) and greater efficacy of nematode deactivation. This work will provide ideas for on-going research efforts into chlorine-resistant invertebrate deactivation, and eventually achieve the direct drinking of municipal tap water.


Author(s):  
Magali Corso ◽  
Catherine Galey ◽  
René Seux ◽  
Pascal Beaudeau

In France, 95% of people are supplied with chlorinated tap water. Due to the presence of natural organic matter that reacts with chlorine, the concentrations of chlorination by-products (CBPs) are much higher in chlorinated water produced from surface water than from groundwater. Surface water supplies 33% of the French population. Until the 1980s, almost all surface water utilities pre-chlorinated water at the intake. Pre-chlorination was then gradually banned from 1980 to 2000. Trihalomethanes (THMs) are the only regulated CBP in France. Since 2003, THMs have been monitored at the outlet of all utilities. This study assessed current (2005–2011) and past (1960–2000) exposure of the French population to THMs. We developed an original method to model THM concentrations between 1960 and 2000 according to current concentrations of THMs, concentration of total organic carbon in raw and finished water, and the evolution of water treatments from 1960 onward. Current and past mean exposure of the French population to THMs was estimated at 11.7 µg·L−1 and 17.3 µg·L−1, respectively. In the past, approximately 10% of the French population was exposed to concentrations >50 µg·L−1 vs. 1% currently. Large variations in exposure were observed among France’s 100 administrative districts, mainly depending on the water origin (i.e., surface vs. ground), ranging between 0.2 and 122.1 µg·L−1 versus between 1.8 and 38.6 µg·L−1 currently.


2018 ◽  
Vol 19 (1) ◽  
pp. 303-312
Author(s):  
A. Szuster-Janiaczyk ◽  
J. Bylka

Abstract The paper presents a detailed analysis of the quality of water pumped into a network and sampled from 39 monitoring points located on the network. A difference in the quality of water sampled from two different sources was demonstrated, as well as the impact of the mixing of the two waters in the water distribution system (WDS) on tap water quality. A mathematical model was used to identify the zones of water mixing and the areas of unfavourable hydraulic conditions (low flow rates and long retention times).


2015 ◽  
Vol 802 ◽  
pp. 513-518
Author(s):  
Nurazim Ibrahim ◽  
Hamidi Abdul Aziz ◽  
Mohd Suffian Yusoff

Natural organic matter (NOM) in water reacts with chlorine or other disinfectants and form hazardous disinfectant by-products (DBPs). This study aimed to detect the presence of NOM in a conventional water distribution system using UV absorbance at 254 nm as a surrogate. Two water treatment plants were selected, namely, Jalan Baharu Water Treatment Plant (JBWTP) and Lubok Buntar Water Treatment Plant (LBWTP). Aside from determining the amount of NOM, the reduction of UV254after completing the series of treatments (coagulation, flocculation, sedimentation, filtration, and disinfection) was also observed. The presence of UV254in both raw water and treated water samples confirmed the presence of NOM. The concentration of UV254recorded at JBWTP and LBWTP were 0.14 and 0.13 cm−1, respectively. After the treatment processes, the concentration was reduced to 0.04 cm−1for JBWTP and 0.03 cm−1for LBWTP. These results indicated that the water supply in both plants contains DBP precursors and implied the possibility of DBP formation in the system. Moreover, the percentage reduction of UV254recorded were 69% and 75% for JBWTP and LBWTP, respectively.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Eddo J. Hoekstra

Substances migrated from products or micro-organisms released from biofilms in the domestic distribution system may affect the quality of tap water. The approach to protect consumers against these possible contaminants and specifically the sampling protocol for compliance monitoring at the tap is not well described in the European Drinking Water Directive. Regulators of the member states like to have guidance. This paper describes the issue and proposes a possible approach.


Sign in / Sign up

Export Citation Format

Share Document