scholarly journals An Assessment of Current and Past Concentrations of Trihalomethanes in Drinking Water throughout France

Author(s):  
Magali Corso ◽  
Catherine Galey ◽  
René Seux ◽  
Pascal Beaudeau

In France, 95% of people are supplied with chlorinated tap water. Due to the presence of natural organic matter that reacts with chlorine, the concentrations of chlorination by-products (CBPs) are much higher in chlorinated water produced from surface water than from groundwater. Surface water supplies 33% of the French population. Until the 1980s, almost all surface water utilities pre-chlorinated water at the intake. Pre-chlorination was then gradually banned from 1980 to 2000. Trihalomethanes (THMs) are the only regulated CBP in France. Since 2003, THMs have been monitored at the outlet of all utilities. This study assessed current (2005–2011) and past (1960–2000) exposure of the French population to THMs. We developed an original method to model THM concentrations between 1960 and 2000 according to current concentrations of THMs, concentration of total organic carbon in raw and finished water, and the evolution of water treatments from 1960 onward. Current and past mean exposure of the French population to THMs was estimated at 11.7 µg·L−1 and 17.3 µg·L−1, respectively. In the past, approximately 10% of the French population was exposed to concentrations >50 µg·L−1 vs. 1% currently. Large variations in exposure were observed among France’s 100 administrative districts, mainly depending on the water origin (i.e., surface vs. ground), ranging between 0.2 and 122.1 µg·L−1 versus between 1.8 and 38.6 µg·L−1 currently.

2009 ◽  
Vol 9 (2) ◽  
pp. 113-120 ◽  
Author(s):  
E. H. Smith ◽  
K. E. El-Deen

A sampling program was conducted in a residential community in Cairo, Egypt in order to determine the presence of chlorine disinfection by-products (DBPs) in treated water and to observe the impact of the distribution system on DBP levels. Five campaigns were conducted over a 15-month period during 2005–2006. Trihalomethanes (THMs) and haloacetic acids (HAAs) exceeded local and international limits depending upon the season. Tap water concentrations of THMs were considerably higher in summer than during the rest of the year. In the Summer 2005 event, the average for the 20 tap water locations was 158 μg/l Total-THMs, well in excess of the U.S. EPA limit of 80 μg/L and the current Egyptian standard of 100 μg/l; all 20 locations exceeded the 100 μg/l limit. For the following event in late Fall 2005, the average dropped to 84 μg/l with 11 and 6 sites exceeding the U.S. EPA and Egyptian limits, respectively. HAA levels tended to be complementary to Total-THM values in that they were lower in summer but higher during fall and spring. The U.S. EPA limit on a select set of 5 HAAs (HAA5) is 60 μg/l (Egypt does not currently regulate HAAs). The average for HAA5 in the Summer 2005 event was 52 μg/l with 8 of the 20 tap samples equalling or exceeding the 60 μg/l standard. By contrast, in Fall 2005, the HAA5 average increased to 89 μg/l, with 15 of 20 sites exceeding the limit. THM and HAA concentrations generally increased with distance from the WTP along a targeted distribution main, while chlorine and natural organic matter tended to decrease.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 321-328 ◽  
Author(s):  
C. Zwiener ◽  
T. Glauner ◽  
F.H. Frimmel

Chlorination and ozonation experiments under conditions close to drinking water treatment were carried out with two different tap waters with low DOC content and water from a bog lake with high natural organic matter content. THM formation was low and in the range of 10 μg/L. Derivatization with dinitrophenylhydrazine and HPLC/tandem mass spectrometry were applied to measure carbonyl DBPs by precursor ion scans at m/z 163 for aldehydes and at m/z 182 for dicarbonyls. Formaldehyde, acetaldehyde, glyoxal, and methylglyoxal were formed by chlorination and ozonation. Ozonation produced the highest levels of carbonyls, in particular in the tap water samples. A strategy for structure suggestion and identification of unknown compounds on the basis of collision-induced dissociation (CID) mass spectra (MS) is given. The resulting structures are carbonyls with additional hydroxy and carboxy groups and serve for choice or synthesis of standard compounds for further identification. The possibilities and limits of compound identification are discussed.


Author(s):  
Tran Tien Khoi ◽  
Nguyen Dang Hoang Chuong ◽  
Hoang Gia Phuc ◽  
Nguyen Thi Thuy ◽  
Nguyen Nhat Huy

In this study, we aimed to use ferrate as an all-in-one alternative for the removal of chlorine-consumed compositions such as organic, color, turbidity, iron, and manganese in river water for water supply purposes. Ferrate (FeO42-) was simultaneously employed as coagulant and oxidant for purification of Saigon River water in order to reduce the formation of disinfection by-products in the produced tap water. The Jartest was conducted using both ferrate for raw river water and poly-aluminum chloride (PAC) for chlorinated water to determine the optimum concentration of chemicals and pH values as well as comparing the effectiveness of ferrate and traditional coagulation with pre-chlorination technology for surface water purification. Results showed that ferrate could be used to remove organic compounds with high efficiency of 86.2% at pH 5 - 6 and ferrate concentration of 16 mgFe/L. Moreover, the removal efficiency for turbidity, color, and iron were at least 90%, indicating that ferrate would be a very promising alternative for chlorine and PAC for water purification.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 146
Author(s):  
Raymond John C. Go ◽  
Hui-Ling Yang ◽  
Chi-Chuan Kan ◽  
Dennis C. Ong ◽  
Sergi Garcia-Segura ◽  
...  

Chemical disinfection of surface waters has been proven effective in minimizing the risk of contamination by water-borne pathogens. However, surface waters contain natural organic matter (NOM) which, upon chemical disinfection, is readily converted into hazardous disinfection-by-products. Hence, NOM removal from these waters is critical. Chemical coagulation is a readily implementable technology to minimize these undesired side-effects by NOM removal. Herein, capabilities of ferric chloride (FeCl3) and polyaluminum chloride (PACl) as pre-treatment for NOM abatement from natural raw surface water have been benchmarked. Excitation-emission fluorescence matrix (EEM) spectroscopy characterization of NOM fractions demonstrated high removal efficiency. A two-level full factorial design was employed to analyze the effects of coagulant dosage and initial pH on the removal of turbidity, humic acid-like substances and fulvic acid-like substances from the raw water. Higher removal of ~77% NOM was attained with PACl than with FeCl3 (~72%). Optimization through response surface methodology showed that the initial pH—coagulant dosage interaction was significant in removing NOM and turbidity for both PACl and FeCl3. These results identify the opportunity for coagulation technologies to prevent and minimize disinfection-by-products formation through NOM removal.


2013 ◽  
pp. 109-128 ◽  
Author(s):  
C. Rühl

This paper presents the highlights of the third annual edition of the BP Energy Outlook, which sets out BP’s view of the most likely developments in global energy markets to 2030, based on up-to-date analysis and taking into account developments of the past year. The Outlook’s overall expectation for growth in global energy demand is to be 36% higher in 2030 than in 2011 and almost all the growth coming from emerging economies. It also reflects shifting expectations of the pattern of supply, with unconventional sources — shale gas and tight oil together with heavy oil and biofuels — playing an increasingly important role and, in particular, transforming the energy balance of the US. While the fuel mix is evolving, fossil fuels will continue to be dominant. Oil, gas and coal are expected to converge on market shares of around 26—28% each by 2030, and non-fossil fuels — nuclear, hydro and renewables — on a share of around 6—7% each. By 2030, increasing production and moderating demand will result in the US being 99% self-sufficient in net energy. Meanwhile, with continuing steep economic growth, major emerging economies such as China and India will become increasingly reliant on energy imports. These shifts will have major impacts on trade balances.


Author(s):  
Ken Peach

This chapter discusses the process of building research teams. Increasingly over the past three-quarters of a century, science has become a collective activity, with teams of tens, hundreds or even thousands of scientists, engineers and technicians working together on a common goal. Consequently, almost all research involves building, motivating and maintaining a research team. Even a theoretical group is likely to have one or two postdocs, graduate students and visitors, but research teams will, in addition, have engineers and technicians, as well as, possibly, research administrators. The chapter also addresses the importance of creating and maintaining a good team and team spirit, as large projects are assembled from a large number of small teams working on common goals, usually in a loose federated structure with some overall coordination and leadership.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2335
Author(s):  
Gabriella Pinto ◽  
Sabrina De Pascale ◽  
Maria Aponte ◽  
Andrea Scaloni ◽  
Francesco Addeo ◽  
...  

Plant polyphenols have beneficial antioxidant effects on human health; practices aimed at preserving their content in foods and/or reusing food by-products are encouraged. The impact of the traditional practice of the water curing procedure of chestnuts, which prevents insect/mould damage during storage, was studied to assess the release of polyphenols from the fruit. Metabolites extracted from pericarp and integument tissues or released in the medium from the water curing process were analyzed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and electrospray-quadrupole-time of flight-mass spectrometry (ESI-qTOF-MS). This identified: (i) condensed and hydrolyzable tannins made of (epi)catechin (procyanidins) and acid ellagic units in pericarp tissues; (ii) polyphenols made of gallocatechin and catechin units condensed with gallate (prodelphinidins) in integument counterparts; (iii) metabolites resembling those reported above in the wastewater from the chestnut curing process. Comparative experiments were also performed on aqueous media recovered from fruits treated with processes involving: (i) tap water; (ii) tap water containing an antifungal Lb. pentosus strain; (iii) wastewater from a previous curing treatment. These analyses indicated that the former treatment determines a 6–7-fold higher release of polyphenols in the curing water with respect to the other ones. This event has a negative impact on the luster of treated fruits but qualifies the corresponding wastes as a source of antioxidants. Such a phenomenon does not occur in wastewater from the other curing processes, where the release of polyphenols was reduced, thus preserving the chestnut’s appearance. Polyphenol profiling measurements demonstrated that bacterial presence in water hampered the release of pericarp metabolites. This study provides a rationale to traditional processing practices on fruit appearance and qualifies the corresponding wastes as a source of bioactive compounds for other nutraceutical applications.


2021 ◽  
Author(s):  
Erin C. Wilson ◽  
Christopher J. Hernandez ◽  
Susan Scheer ◽  
Dillon Trujillo ◽  
Sean Arayasirikul ◽  
...  

AbstractTransgender women face a serious risk of HIV infection. Despite this, there is limited knowledge and use of Pre-exposure prophylaxis (PrEP). We measured the continuity of prevention across services in the PrEP cascade and correlates of PrEP use among trans women in San Francisco enrolled in the 2019/20 National HIV Behavioral Surveillance Study. Knowledge and use of PrEP among trans women in San Francisco increased in recent years; almost all (94.0%) had heard about PrEP, 64.7% had discussed PrEP with a healthcare provider, and 44.8% had taken PrEP in the past 12 months. PrEP use was associated with participation in a PrEP demonstration project (aOR = 31.44, p = 0.001) and condomless receptive anal intercourse (aOR = 3.63, p = 0.024). Injection drug use was negatively associated (aOR = 0.19, p = 0.014). Efforts are needed to combat the gender-based stigma and discrimination faced by trans women, which can result in avoidance and mistrust of the medical system.


1988 ◽  
Vol 20 (3) ◽  
pp. 149-163 ◽  
Author(s):  
Carol Braester ◽  
Rudolf Martinell

Nearly one fifth of all water used in the world is obtained from groundwater. The protection of water has become a high priority goal. During the last decades pollution of water has become more and more severe. Today groundwater is more and more used in comparison with surface water. Recently we have seen accidents, which can pollute nearly all surface water very quickly. Generally the groundwater is easier to protect, as well as cheaper to purify, and above all it is of better quality than the surface water. During the past two decades, alternatives to the traditional method of treating the water in filters have been developed, that is in situ water treatment i.e. the VYREDOX and NITREDOX methods. The most common problem regarding groundwater is too high content of iron and manganese, which can be reduced with the VYREDOX method. In some areas today there are severe problems with pollution by hydrocarbons and nitrate as well, and with modification of the VYREDOX treatment method it is used for hydrocarbon and nitrate treatment as well. The method to reduce the nitrate and nitrite is known as the NITREDOX method.


Sign in / Sign up

Export Citation Format

Share Document