Factors affecting formation of haloacetonitriles and haloketones during chlorination/monochloramination of Jinlan Reservoir water

2013 ◽  
Vol 13 (4) ◽  
pp. 1123-1129 ◽  
Author(s):  
Huachang Hong ◽  
Fangqu Huang ◽  
Hongjun Lin ◽  
Haiying Yu ◽  
Fangyuan Wang ◽  
...  

Formations of haloacetonitriles (HANs) and haloketones (HKs) from chlorination and chloramination from Jinlan Reservoir water under different treatment conditions were investigated in this study. Results showed that monochloramine rather than chlorine produced significant lower concentrations of HANs and HKs. In chlorination, the formation of HANs and HKs increased with the reaction time and chlorine dose. Addition of bromide significantly enhanced the total HANs yields but reduced total HKs formation due to the unavailability of bromine-containing HKs. HANs yields increased as the temperature was raised, yet HKs yields increased first and decreased later with temperature. As for the influence of pH, the HKs yields generally increased as the pH decreased, yet no obvious pattern was observed for HANs formation. On the other hand, in monochloramination, the yields of HANs and HKs generally increased with reaction time, temperature and the monochloramine dose. Higher HANs and HKs yields formed at low pH, and the addition of bromide significantly increased the total HANs yields. Range analysis further revealed that avoiding the bromide contamination, lowering the chlorine/monochloramine dose as well as reducing the reaction time were the effective ways to control HANs and HKs formation for drinking water sourced from Jinlan Reservoir water.

Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 214
Author(s):  
Sara Ebrahimi ◽  
Aminah Robinson Fayek ◽  
Vuppuluri Sumati

This paper presents a novel approach, using hybrid feature selection (HFS), machine learning (ML), and particle swarm optimization (PSO) to predict and optimize construction labor productivity (CLP). HFS selects factors that are most predictive of CLP to reduce the complexity of CLP data. Selected factors are used as inputs for four ML models for CLP prediction. The study results showed that random forest (RF) obtains better performance in mapping the relationship between CLP and selected factors affecting CLP, compared with the other three models. Finally, the integration of RF and PSO is developed to identify the maximum CLP value and the optimum value of each selected factor. This paper introduces a new hybrid model named HFS-RF-PSO that addresses the main limitation of existing CLP prediction studies, which is the lack of capacity to optimize CLP and its most predictive factors with respect to a construction company’s preferences, such as a targeted CLP. The major contribution of this paper is the development of the hybrid HFS-RF-PSO model as a novel approach for optimizing factors that influence CLP and identifying the maximum CLP value.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 51-54
Author(s):  
J. Fettig

Abstract The structure of public water supply in Germany and the water resources used are briefly described. An overview over the legal requirements for drinking water is given, and the sources for contaminants are outlined. Then the multiple-barrier approach is discussed with respect to the resources groundwater and spring water, lake and reservoir water, and river water. Examples for treatment schemes are given and the principle of subsurface transport of river water as a first treatment step is described.


2013 ◽  
Vol 14 (4) ◽  
pp. 393-398

The occurrence of trihalomethanes (THMs) was studied in the drinking water samples from urban water supply network of Karachi city that served more than 18 million people. Drinking water samples were collected from 58 locations in summer (May-August) and winter (November-February) seasons. The major constituent of THMs detected was chloroform in winter (92.34%) and summer (93.07%), while the other THMs determined at lower concentrations. Summer and winter concentrations of total THMs at places exceed the levels regulated by UEPA (80 μg l-1) and WHO (100 μg l-1). GIS linked temporal variability in two seasons showed significantly higher median concentration (2.5%-23.06%) of THMs compared to winter.


2002 ◽  
Vol 2 (3) ◽  
pp. 17-22
Author(s):  
A.P. Wyn-Jones ◽  
J. Watkins ◽  
C. Francis ◽  
M. Laverick ◽  
J. Sellwood

Two rural spring drinking water supplies were studied for their enteric virus levels. In one, serving about 30 dwellings, the water was chlorinated before distribution; in the other, which served a dairy and six dwellings the water was not treated. Samples of treated (40 l) and untreated (20 l) water were taken under normal and heavy rainfall conditions over a six weeks period and concentrated by adsorption/elution and organic flocculation. Infectious enterovirus in concentrates was detected in liquid culture and enumerated by plaque assay, both in BGM cells, and concentrates were also analysed by RT-PCR. Viruses were found in both raw water supplies. Rural supplies need to be analysed for viruses as well as bacterial and protozoan pathogens if the full microbial hazard is to be determined.


2021 ◽  
Vol 10 (5) ◽  
pp. 348
Author(s):  
Zhenbo Du ◽  
Bingbo Gao ◽  
Cong Ou ◽  
Zhenrong Du ◽  
Jianyu Yang ◽  
...  

Black soil is fertile, abundant with organic matter (OM) and is exceptional for farming. The black soil zone in northeast China is the third-largest black soil zone globally and produces a quarter of China’s commodity grain. However, the soil organic matter (SOM) in this zone is declining, and the quality of cultivated land is falling off rapidly due to overexploitation and unsustainable management practices. To help develop an integrated protection strategy for black soil, this study aimed to identify the primary factors contributing to SOM degradation. The geographic detector, which can detect both linear and nonlinear relationships and the interactions based on spatial heterogeneous patterns, was used to quantitatively analyze the natural and anthropogenic factors affecting SOM concentration in northeast China. In descending order, the nine factors affecting SOM are temperature, gross domestic product (GDP), elevation, population, soil type, precipitation, soil erosion, land use, and geomorphology. The influence of all factors is significant, and the interaction of any two factors enhances their impact. The SOM concentration decreases with increased temperature, population, soil erosion, elevation and terrain undulation. SOM rises with increased precipitation, initially decreases with increasing GDP but then increases, and varies by soil type and land use. Conclusions about detailed impacts are presented in this paper. For example, wind erosion has a more significant effect than water erosion, and irrigated land has a lower SOM content than dry land. Based on the study results, protection measures, including conservation tillage, farmland shelterbelts, cross-slope ridges, terraces, and rainfed farming are recommended. The conversion of high-quality farmland to non-farm uses should be prohibited.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 975
Author(s):  
Antonio Copak ◽  
Vlatka Jirouš-Rajković ◽  
Nikola Španić ◽  
Josip Miklečić

Oriented strand board (OSB) is a commonly used structural wood-based panel for walls and roof siding, but recently the industry has become interested in OSB as a substrate for indoor and outdoor furniture. Particleboard is mainly used in furniture productions and has become popular as a construction material due to its numerous usage possibilities and inexpensive cost. Moisture is one of the most important factors affecting wood-based panel performance and the post-treatment conditions affected their affinity to water. When OSB and particleboard are used as substrates for coatings, their surface characteristics play an important role in determining the quality of the final product. Furthermore, roughness can significantly affect the interfacial phenomena such as adsorption, wetting, and adhesion which may have an impact on the coating performance. In this research particleboard and OSB panels were sanded, re-pressed and IR heated and the influence of surface treatments on hardness, roughness, wetting, water, and water vapour absorption was studied. Results showed that sanding improved the wetting of particleboard and OSB with water. Moreover, studied surface treatments increased water absorption and water penetration depth of OSB panels, and re-pressing had a positive effect on reducing the water vapour absorption of particleboard and OSB panels.


Author(s):  
Yuichi Suzuki

Abstract A subtest of the LLAMA test battery (LLAMA_D) has been proposed as a potential test of implicit learning aptitude. To improve its construct validity, in the present study, the original LLAMA_D (a) instructions for incidental learning were modified, and (b) confidence ratings of test responses and (c) reaction time (RT) measurements were added. This revised LLAMA_D was administered along with the other LLAMA subtests (LLAMA-B, -E, and -F). Unconscious knowledge that may (not) result from the exposure was assessed through the relationship between the accuracy/RT and confidence ratings. The results suggest that LLAMA_D accuracy largely reflects conscious retrieval of previously heard sound sequences. However, an index derived from the LLAMA_D RT measure (coefficient of variance) was associated with an aspect of oral fluency, which is presumably dependent on proceduralization. Several recommendations are proposed to redesign and extend LLAMA_D as a potential aptitude test for proceduralization.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 330
Author(s):  
Libo Pan ◽  
Xiao Guan ◽  
Bo Liu ◽  
Yanjun Chen ◽  
Ying Pei ◽  
...  

Acid mine drainage (AMD) from abandoned coal mines can lead to serious environmental problems due to its low pH and high concentrations of potentially toxic elements. In this study, soil pH, sulfur (S) content, and arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), iron (Fe), manganese (Mn), and mercury (Hg) concentrations were measured in 27 surface soil samples from areas in which coal-mining activities ceased nine years previously in Youyu Catchment, Guizhou Province, China. The soil was acidic, with a mean pH of 5.28. Cadmium was the only element with a mean concentration higher than the national soil quality standard. As, Cd, Cu, Ni, Zn, Mn, Cr, and Fe concentrations were all higher than the background values in Guizhou Province. This was especially true for the Cd, Cu, and Fe concentrations, which were 1.69, 1.95, and 12.18 times their respective background values. The geoaccumulation index of Cd and Fe was present at unpolluted to moderately polluted and heavily polluted levels, respectively, indicating higher pollution levels than for the other elements in the study area. Spatially, significantly high Fe and S concentrations, as well as extremely low pH values, were found in the soils of the AMD sites; however, sites where tributaries merged with the Youyu River (TM) had the highest Cd pollution level. Iron originated mainly from non-point sources (e.g., AMD and coal gangues), while AMD and agricultural activity were the predominant sources of Cd. The results of an eco-risk assessment indicated that Cd levels presented a moderate potential ecological risk, while the other elements all posed a low risk. For the TM sites, the highest eco-risk was for Cd, with levels that could be harmful for aquatic organisms in the wet season, and may endanger human health via the food chain.


2010 ◽  
Vol 10 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. Murillo ◽  
J. Sarasa ◽  
M. Lanao ◽  
J. L. Ovelleiro

The degradation of chlorpyriphos by different advanced oxidation processes such as photo-Fenton, TiO2, TiO2/H2O2, O3 and O3/H2O2 was investigated. The photo-Fenton and TiO2 processes were optimized using a solar chamber as light source. The optimum dosages of the photo-Fenton treatment were: [H2O2]=0.01 M; [Fe3 + ]=10 mg l−1; initial pH = 3.5. With these optimum conditions total degradation was observed after 15 minutes of reaction time. The application of sunlight was also efficient as total degradation was achieved after 60 minutes. The optimum dosage using only TiO2 as catalyst was 1,000 mg l−1, obtaining the maximum degradation at 20 minutes of reaction time. On the other hand, the addition of 0.02 M of H2O2 to a lower dosage of TiO2 (10 mg l−1) provides the same degradation. The ozonation treatment achieved complete degradation at 30 minutes of reaction time. On the other hand, it was observed that the degradation was faster by adding H2O2 (H2O2/O3 molar ratio = 0.5). In this case, total degradation was observed after 20 minutes.


2013 ◽  
Vol 734-737 ◽  
pp. 1200-1203
Author(s):  
Shu Qiang Liu ◽  
Ji Cheng Zhang ◽  
Jin Cheng Xu

During polymer flooding, certain amount of polymer would be lost. Polymer retention causes sweep volume expanding on one side, it also causes polymer loss on the other. Therefore, it is a very important topic to study the influencing factors of polymer retention. There are many factors affecting polymer retention process. This paper mainly studied the influence from dynamic factors such as polymer solution concentration, injection rate, injection time, injected pv number. This paper investigated the influence of these factors on polymer retention process, and optimized these factors to minimize polymer loss in reservoir.


Sign in / Sign up

Export Citation Format

Share Document