Spatial variation of water quality in upper catchment of Miyun Reservoir

2016 ◽  
Vol 16 (3) ◽  
pp. 817-827 ◽  
Author(s):  
Erqi Xu ◽  
Hongqi Zhang ◽  
Guanglong Dong ◽  
Lei Kang ◽  
Xuejiao Zhen

Miyun Reservoir is the main surface source of drinking water for Beijing, China. Water eutrophication has compelled authorities to improve the water quality in its upstream catchment. However, a water-quality survey of the entire catchment was lacking. A total of 52 monitoring sites covering the entire catchment were sampled approximately monthly from July–September 2013, in response to rainfall and runoff. Six water nutrient concentrations were used to characterize the eutrophication, which was relatively severe. The total nitrogen pollution was classified as the worst grade of the water-quality standard. The water quality of Bai River was superior to that of Chao River, while the quality of tributaries was better than that of main rivers. The upstream and downstream reaches of main rivers and small tributaries usually had cleaner water than the middle reaches. The worst pollution mainly appeared in the middle reaches in Hebei Province. Spatial variations in water quality were closely related to land use quantitative characteristics of sub-watersheds. We suggest that a balanced, transparent compensation mechanism focused on Hebei Province would assist to improve water quality.

2013 ◽  
Vol 454 ◽  
pp. 153-157
Author(s):  
Xiao Hui Wang ◽  
Guo Yi Li

Pilot test of combined process of Ultrafiltration and Reverse Osmosis was researched in this paper, which is the advanced treatment of the MBR technology effluent of port sewage,the result suggested that this devices was feasible in technology, and the quality of effluent was stable, better than the quality standard of The Reuse of Urban Recycling Water-Water Quality for urban miscellaneous water.


2017 ◽  
Vol 13 (2) ◽  
pp. 111-119
Author(s):  
Lela Uyara ◽  
Pieter Kunu ◽  
Silwanus M Talakua

The study aims to determine the quality of clean water in the villages of Wainitu, Batumerah, Amahusu and Halong by comparing the result of water quality analysis with water quality standard. Water quality analysis includes Physiscal, Chemical, and Microbiological parameters. This research uses descriptive method, this method describes systematics, accurate about facts and characteristic of the quality of clean water of each research location. The results showed that the source of clean water in the village of Batumerah did not meet the standard of clean water quality standards indicated by the number of E. coli and the high total coliform.  Keywords: standard quality of clean water, water quality, Wainitu, Batumerah, Amahusu and Halong villages   ABSTRAK Penelitian yang bertujuan untuk menetapkan kualitas air bersih di Desa Wainitu, Batumerah, Amahusu dan Halong, dengan membandingkan hasil analisis kualitas air dengan standar baku mutu air bersih. Analisis kualitas air meliputi parameter fisika, kimia dan mikrobiologi. Penelitian ini menggunakan metode deskriptif; metode ini menggambarkan sicara sistematis, akurat, fakta dan karakteristik mengenai kualitas air bersih di masing-masing lokasi penelitian. Hasil penelitian menunjukkan bahwa sumber air bersih di Desa Batumerah tidak memenuhi standar baku mutu air bersih yang ditunjukkan oleh jumlah E. coli dan total Koliform yang tinggi. Kata Kunci: baku mutu air bersih, Desa Wainitu, Batumerah, Amahusu dan Halong, kualitas air


Author(s):  
Beny Mustofa ◽  
I Wayan Arthana ◽  
Ni Luh Watiniasih

The purpose of this study was to determine the quality of waters, community structure of phytoplankton and zooplankton around the fishponds waters of Gerokgak Subdistrict. This research was conducted for 2 months, from May to June 2019. There were three sampling locations, namely in Gerokgak, Patas and Sumberkima Villages. The research method used was field research using quantitative analysis of phytoplankton biological indice. The waters condition around the Gerokgak Subdistrict waters was rather polluted, except for the around Sumberkima Village waters. The quality of the waters of Sumberkima Village was better than that of Gerokgak Village and Patas Village waters. Plankton abundance in the waters of Sumberkima Village was slightly low. The highest abundance of plankton in the waters of Patas Village and the lowest in Gerokgak Village waters. The dominant type of plankton was Cyanophyceae (blue-green algae). Keywords: water quality; plankton; species; abundance.


2017 ◽  
Vol 14 (3) ◽  
pp. 251
Author(s):  
Rita Yulianti ◽  
Emi Sukiyah ◽  
Nana Sulaksana

Daerah penelitian terletak di desa Muaro Limun, Kecamatan Limun Kabupaten Sarolangun Provinsi Jambi. Sungai limun, salah satu sungai besar di daerah kabupaten sarolangun yang dimanfaatkan oleh mayarakat sekitarnya sebagai sumber penghidupan. Penelitian bertujuan untuk mengetahui pengaruh kegiatan penambangan terhadap kualitas air sungai Batang Limun, dan perubahan sifat fisik dan  kimia yang diakibatkan   kegiatan penambangan.Metode yang digunakan adalah  metode grab sampel, serta stream sedimen untuk dianalis di laboratorium. Sejumlah sampel diambil di beberapa lokasi Penambangan Emas berdasarkan Aliran Sub-DAS dan dibandingkan dengan beberapa sampel lain yang diambil pada lokasi yang belum terkontaminasi oleh kegiatan penambangan. Analisis kualitas air mengacu pada  SMEWWke 22 tahun 2012 dan standar baku mutu air kelas II dalam PP No 82 yang dikeluarkan oleh Menteri Kesehatan No. 492/Menkes/Per/IV/2010. Diketahui sungai Batang Limun telah mengalami perubahan karakteristik fisika dan kimia. Dari grafik  kosentrasi kekeruhan, pH, TSS, TDS  Cu, Pb, Zn, Mn, Hg terlihat bahwa penambang emas tanpa izin (PETI) dengan cara amalgamasi yang menyebabkan terjadinya penurunan kualitas air sungai. Sejak tahun 2009 sampai tahun 2015  sungai Limun dan sekitarnya terus mengalami penurunan kualitas air. Penurunan kualitas yang cukup tinggi terjadi  yaitu peningkatan nilai Rata-rata konsentrasi merkuri pada sungai Batang Limun dari 0,18ppb (0,00018 mg/l)  menjadi 0,3ppb (0,0003 mg/l), peningkatan tersebut dipengaruhi oleh proses kegiatan penambangan dan nilai tersebut masih dibawah standar baku mutu air kelas II  pp nomor 82 tahun 2010.Kata kunci :   Kualitas Air, Sungai Limun,TSS, Merkuri, PETI Limun river is one of the major rivers in the area of Sarolangun, which utilized by the society as a source of livelihood. The aim of study  to analyze the effect of mining activities on  the water quality of Batang Limun River, and the changes of physical and chemical properties of water. The method used are grab  and stream samples to  sediment analyzed in the laboratory. A number of samples were taken at several locations based Flow Gold Mining Sub-watershed and compared to some other samples taken at the location that has not been contaminated by mining activities. Water quality analysis referring to SMEWW, 22nd edition 2012 and refers to Regulation No 82 that issued by Minister of Health No. 492 / Menkes / Per / IV / 2010.The results showed that the Limun river has undergone chemical changes in physical characteristics. These symptoms can be seen from the discoloration of clear water in the river before the mine becomes brownish after mining, based on graphic of muddiness concentration: pH, TSS, TDS Cu, Pb, Zn, Mn, Hg have seen that  the illegal miner which used amalgamation caused deterioration in water quality, data from 2009 to 2015 Limun river and surrounding areas continue to experience a decrease in water quality. The decreasing of water quality showed in the TSS parameter which found in the area is to high based on  the standard of water quality class II pp number 82 of 2010. An increase in the value of average concentrations of mercury in the Batang Limun river before mine 0,18ppb (0.00018 mg / l) into 0,3ppb (0.0003 mg / l) on the river after the mine. The increase was affected by the mining activities and the value is still below the air quality standard Grade II pp numbers 82 years 2010, although the value is still below with the standards quality standard, the mercury levels in water should still be a major concern because if it accumulates continuously in the water levels will increase and will be bad for health. In contrast to the concentration of mercury in sediments that have a higher value is 153 ppb (0,513ppm ) .Key Words :   Water Quality, Limun River, Mercury, Illegal gold mining


Author(s):  
Woodruff Miller

This study is the continuation of an evaluation of the trophic state of lakes located in Grand Teton National Park, Wyoming. The original 1995 study was motivated by concern that the water quality of the lakes within the Park may be declining due to increased human usage over the past several years. A trophic state evaluation, featuring nutrient and chlorophyll-a analyses, was chosen because it is believed to be a sound indicator of the lakes' overall water quality. In this 1996 study, a thorough evaluation was made of Jackson Lake. This summary is taken from the complete 100 page report which is available from Woodruff Miller at Brigham Young University or Hank Harlow at the University of Wyoming. In most cases water samples were taken four times during the summer of 1996, in June, July, August, and October. Jackson Lake was sampled at eight different locations on thesurface and at depths near the bottom. The lake inlet and outlet were also sampled four times. Jackson Lake was sampled from a motor boat which also provided a means to measure the lake transparency and depth. The chlorophyll-a and nutrient concentrations were analyzed by the Utah State Health Department, Division of Laboratory Services. Jackson Lake was evaluated using the models of Carlson, Vollenweider, and Larsen­Mercier. The nature of the Larsen-Mercier and Vollenweider models, based on system inflow and outflow data, is such that they yield one trophic state assessment of the lake per inflow and outflow sample set. The Carlson Trophic State Indices (TSI), on the other hand, are based on in situ properties of the water at any point in the lake. Consequently, while there are four Vollenweider and four Larsen-Mercier evaluations for Jackson Lake, individual Carlson evaluations were made for the eight sample sites around the lake at the surface and at depth, and an evaluation for the lake as a whole was constructed using averages taken from the site evaluations. This allowed us to examine the relative water quality of different portions of the lake at different time periods.


Author(s):  
Rizky Muliani Dwi Ujianti ◽  
Althesa Androva

 Abstract. Banjir Kanal Barat is a river in the Garang watershed, Semarang City, Central Java, Indonesia. Its function is as a source of water for the community. The level of pollution in this river is already high. The purpose of this study is to provide advice to governments, communities and related stakeholders to realize integrated river management, and fisheries-based food security is achieved. This research method is: analyzing the water quality of the Banjir Kanal Barat river, and analyzing the amount of faecal and total coliform bacteria content in the Banjir Kanal Barat river, and analyzing how to overcome the decline in the quality of waters of the Banjir Kanal Barat river due to faecal and total coliform bacteria pollution. The results showed that the water quality at the research location was still in the quality standard. The content of coliform dan faecal bacteria at the study site exceeds the quality standard, this is due to the influence of domestic waste from households. The thing that needs to be done is counseling the existence of a clean and healthy life, especially for people who are still throwing domestic waste into the river. The existence of water purification equipment is also very necessary to overcome this problem. Water quality management can be done with policy analysis. Regulations related to water quality management can be analyzed and then given solutions and recommendations related to these rules so that policies can be taken that are sustainable, integrated, and coordinated between various parties in managing river water quality and food security. Keywords: food security, water quality, river, faecal coliform, total coliform


2017 ◽  
Vol 3 (2) ◽  
pp. 104
Author(s):  
Dewi Elfidasari ◽  
Nita Noriko ◽  
Yunus Effendi ◽  
Riris Lindiawati Puspitasari

<div class="WordSection1"><p><em>Abstrak</em> - <strong>Situ Lebak Wangi merupakan situ yang berada di daerah Bogor, dan awalnya dimanfaatkan sebagai tempat penampungan air saat musim hujan untuk peningkatkan persediaan  air tanah.  Saat ini, Situ Lebak Wangi dimanfaatkan sebagai tempat pembuangan limbah oleh masyarakat. Hal ini dapat menyebabkan perubahan kualitas baik fisik, kimia dan biologi  perairan situ. Untuk itu perlu dilakukan penelitian terhadap kualitas fisik, kimia dan biologi perairan Situ Lebak Wangi agar diperoleh informasi mengenai kualitas perairannya sehingga dapat disosialisasikan kepada masyarakat di sekitarnya nilai penting konservasi, pengelolaan dan pemanfaatan situ tersebut. Hasil pengukuran sifat fisik dan kimia air menunjukkan bahwa suhu di perairan Situ Lebak Wangi masih memenuhi baku mutu air kelas 1, nilai total padatan terlarut perairan Situ masih di bawah ambang batas baku mutu yang dipersyaratkan, nilai kecerahan di perairan Situ Lebak Wangi berkisar antara 67,17 – 80,83 cm dengan nilai rata-rata 74,46 cm, nilai pH perairan danau lebih rendah dari perairan sungai, yaitu berkisar antara 6,60–8-80. Pengukuran DO menunjukkan bahwa di perairan danau konsumsi oksigennya lebih tinggi, sedangkan hasil BOD5 menunjukkan bahwa perairan Situ Lebak Wangi sudah tercemar oleh bahan organik mudah urai (BOD5). Nilai daya hantar listrik berkisar antara 112,0 – 118,0 µhos/cm. Hasil analisa kualitas air Situ Lebak Wangi secara keseluruhan menunjukkan bahwa perairan tersebut tidak layak untuk dijadikan sebagai air baku, karena mengandung bakteri patogen Salmonella-Shigella yang merupakan penyebab thypus dan kolera. </strong></p><p>                                                          </p><p><strong><em>Keata Kunci </em></strong> - kualitas fisik, kimia dan biologi; Situ Lebak Wangi; Perairan; Baku mutu air</p></div><br clear="all" /><p> </p><p><em>Abstract</em> - <strong>Situ Lebak Wangi is a place located in the Bogor area, and was originally used as a water reservoir during the rainy season to increase groundwater supply. Currently, Situ Lebak Wangi is used as a waste disposal site by the community. This can lead to changes in the quality of both physical, chemical and biological waters there. Therefore, research on the physical, chemical and biological qualities of waters of Situ Lebak Wangi to obtain information about the quality of the waters so that it can be socialized to the community around the importance of conservation, management and utilization of the site. The result of measurement of physical and chemical properties of water shows that the temperature in Situ Lebak Wangi waters still meet the water quality standard class 1, the total dissolved solids of waters Situ is still below the required quality standard threshold, the brightness value in Situ Lebak Wangi waters ranges between 67, 17 - 80.83 cm with an average rating of 74.46 cm, the pH value of the lake waters lower than river waters, which ranged from 6.60-8-80. Measurements of DO indicate that in lake waters oxygen consumption is higher, whereas BOD5 results show that waters Situ Lebak Wangi already contaminated by organic material easily explained (BOD5). The electrical conductivity values range from 112.0 - 118.0 μhos / cm. The result of Situ Lebak Wangi water quality analysis as a whole shows that the water is not feasible to serve as raw water, because it contains Salmonella-Shigella pathogen bacteria which is the cause of thypus and cholera.</strong></p><p><strong> </strong></p><p><strong><em>Keywords</em></strong><strong> - </strong><em>physical quality, chemistry and biology, </em><em>Situ Lebak Wangi, </em><em>Waters, Water quality standards</em><strong><em></em></strong></p>


2020 ◽  
Vol 49 (1) ◽  
pp. 191-196
Author(s):  
HO Salah ◽  
IM Sujaul ◽  
Md Abdul Karim ◽  
MH Mohd Nasir ◽  
A Abdalmnam ◽  
...  

Assessment of the quality of tap water at Kuantan area of Pahang, Malaysia was investigated. The parameters analyzed were total coliform, Escherichia coli, pH, total hardness, sulfate, and selected heavy metal based on drinking water quality standard Malaysia and WHO. The results showed that the fungi in the tap water in Kuantan area in different concentrations were Aspergillus sp., Rhodotorula mucilaginosa, Penicillium citrinum, Cladosporium cladosporioides, Cerrena sp., Aspergillus aculeatus, A. flavus, Cryptococcus sp., Cladosporium perangustum, Purpureocillium lilacinum and Candida catenulata. The residual free chlorine varied from 0.05 to 1.97 mg/l.


2019 ◽  
Vol 28 (2) ◽  
pp. 147-158
Author(s):  
Mohammad Saiful Islam ◽  
Romana Afroz ◽  
Md Bodruddoza Mia

This work has been conducted to evaluate the water quality of the Buriganga river. In situ water quality parameters and water samples were collected from 10 locations in January 2016 and analyzed later in laboratory for water quality parameters such as pH, Eh, EC, TDS, cations (Na+, K+, Ca2+, Mg2, As3+), anions (Cl-, HCO3-, NO2-, NO3-, SO42-, F-, Br-, PO43-), heavy metals (Cr2+, Pb2+, Zn2+, Cd+2, Fe2+, Mn2+) to see whether or not the level of these parameters are within the permissible limits. The average values of pH, Eh, EC and temperature were 7.31, –214.9 mV, 928.9 μs/cm and 21.4°C, respectively; the average concentration of Na+, K+, Ca2+, Mg2+, and As3+ were 109.62, 13.38, 46.78, 13.98 and 0.018 mg/l, respectively, while the concentrations of Cl-,HCO3-, PO43-, SO42-, NO3-, NO2-, F and Br -were 79, 331.06, 2.22, 84.32, 0.0254, 0.058, 0.224 and 0.073 mg/l, respectively; and the concentration of heavy metals Pb2+, Zn2+, Fe2+ and Mn2+were 0.28, 0.053, 0.17 and 0.23 mg/l, respectively. The study indicates that most of the parameters are within the permissible limits set by Bangladesh water quality standard. The concentrations of K+, Mn2+, and Pb2+ were beyond the permissible limits meaning that that the water of Buriganga is not safe for drinking. The people living beside Buriganga river should be more cautious about using the polluted/contaminated river water. The concerned authorities should take urgent necessary steps to improve the degraded water quality of the river considering the ecological, environmental and economic implications associated with it. Dhaka Univ. J. Biol. Sci. 28(2): 147-158, 2019 (July)


2018 ◽  
Vol 68 ◽  
pp. 04009 ◽  
Author(s):  
Ihya Sulthonuddin ◽  
Djoko Mulyo Hartono ◽  
Suyud Warno Utomo

Cimanuk river is one of the seven rivers in West Java. Cimanuk river pollution is indicated to have suffered as a result of the activity of domestic waste, industrial and agricultural uncontrolled in the riparian area of Cimanuk river. This research aims to analize water quality of Cimanuk river based on water quality standard on Government Regulation of Republic of Indonesia (IDN), Regulation of the Governor of West Java (WJ), World Health Organization (WHO), Enviromental Standard of United Kingdom (UK), Environmental Protection Agency (EPA), Enviromental Quality Standard (EQS), and Department of Environment (DOE). This research used pollution index method. The result is water quality of Cimanuk river not meet water quality standard where the TSS (94.85±84,60 mg/L), BOD (9.61±3.16 mg/L), COD (37.69±14.01 mg/L), DO (5.12±1.22 mg/L), NH3N (0.25±0.24 mg/L). Degradation of water quality of Cimanuk river from upstream to downstream marked by increased pollution index value annually. Pollution index of Cimanuk river ranging from 1.25 to 20.31. Water quality status of Cimanuk river has been from lightly polluted to heavilypolluted.


Sign in / Sign up

Export Citation Format

Share Document