Reduction of local scour around a bridge pier by using different shapes of pier slots and collars

2020 ◽  
Vol 20 (3) ◽  
pp. 1006-1015 ◽  
Author(s):  
A. Bestawy ◽  
T. Eltahawy ◽  
A. Alsaluli ◽  
A. Almaliki ◽  
M. Alqurashi

Abstract Local scour around bridge piers is one of the main causes of bridge failure all over the world. Experimental and hydraulic models were carried out to investigate two types of scour reduction methods around a single cylindrical pier, namely the pier's slots and collars. The efficiency of various types of pier slots and circular collars around the pier's base in reducing scour were studied. A new shape of a conical collar was developed by the authors and examined along with other shapes. The results revealed that collars, in general, have more influence in reducing scour depth than slots made in the front and rear of bridge piers. The sigma-slot acts better than other tested slots, with a reduction in the scour depths of 59.3% and 52.8% at the upstream and downstream of the pier, respectively. On the other hand, the conical collar appeared to be the most effective collar shape in reducing the scour around the bridge pier, with a 61.1% reduction in the scour depth downstream of the pier. A three-dimensional laser scanner was used to capture the bed topography at the end of each experiment and contour maps of the deformed bed were produced. A one-dimensional Hydrologic Engineering Center-River Analysis System model was developed with a single bridge pier to predict the scour depth around the pier in an attempt to introduce new values for the pier nose shape factor, , which describes the tested piers.

Author(s):  
Mohammad Reza Namaee ◽  
Jueyi Sui ◽  
Yongsheng Wu ◽  
Natalie Linklater

Local scour around piers is one of the primary causes of collapse of bridges that cross rivers. The most severe scouring occurs in cold regions where ice cover significantly changes the velocity profile. Having an accurate estimation of the maximum scour depth around bridge piers, especially in cold regions, is necessary for a safer design of piers. In this study, 3-D numerical models are compared to laboratory experiments to examine the process of local scour around bridge piers with and without smooth and rough ice cover. By using the equation of Meyer-Peter Müller, the sediment transport model is validated to approximate the transport of the sediment particles. Numerical results showed good agreements with experimental observations where the maximum scour depth and Turbulent Kinetic Energy (TKE) around bridge piers were the highest under rough ice cover conditions.


2020 ◽  
Vol 144 ◽  
pp. 01008
Author(s):  
Shaolin Yue ◽  
Huan Zhou ◽  
Wenlong Zhu ◽  
Minxi Zhang

The riverbeds or sea beds are usually composed of multi-layers of sediments. The scour around bridge piers sited on such beds is vital to the bridge safety, but is still very difficult to be predicated as its complicated interaction between the flow and bed layers. A simple model is proposed in this study for calculating the local scour maximum depth around bridge piers sited on multi-layer of sedimentary bed, which is based on HEC-18 formula revised by Richardson and Davis (2001) and the formula of the repose angle of sediment particles proposed by Cheng (1993). This model considers the particle sorting when the scour proceeds. An application of the model into the local scour depth of Guopan bridge pier sited on the Weihe River bed in Baoji city of China preliminarily demonstrates its reliability to calculate the local scour maximum depth around bridge piers sited on multi-layer of sedimentary bed.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1462
Author(s):  
Chung-Ta Liao ◽  
Keh-Chia Yeh ◽  
Yin-Chi Lan ◽  
Ren-Kai Jhong ◽  
Yafei Jia

Local scour is a common threat to structures such as bridge piers, abutments, and dikes that are constructed on natural rivers. To reduce the risk of foundation failure, the understanding of local scour phenomenon around hydraulic structures is important. The well-predicted scour depth can be used as a reference for structural foundation design and river management. Numerical simulation is relatively efficient at studying these issues. Currently, two-dimensional (2D) mobile-bed models are widely used for river engineering. However, a common 2D model is inadequate for solving the three-dimensional (3D) flow field and local scour phenomenon because of the depth-averaged hypothesis. This causes the predicted scour depth to often be underestimated. In this study, a repose angle formula and bed geometry adjustment mechanism are integrated into a 2D mobile-bed model to improve the numerical simulation of local scour holes around structures. Comparison of the calculated and measured bed variation data reveals that a numerical model involving the improvement technique can predict the geometry of a local scour hole around spur dikes with reasonable accuracy and reliability.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3015
Author(s):  
Takuma Kadono ◽  
Sho Kato ◽  
Shinichiro Okazaki ◽  
Toshinori Matsui ◽  
Yoshio Kajitani ◽  
...  

To evaluate the stability of bridge piers affected by the local scouring, the existing formulas for estimating the maximum local scour depth have been developed based on the results of experiments conducted under a constant water level. However, the applicability of these formulas to the cases where the water level rises and falls, such as a water level change in a real river, is not clear. In this study, water flow experiments were conducted on cylindrical and oval bridge pier models to investigate the effect of iterated water level change on the progression of local scour around piers. Results of experiments with cylindrical and oval pier showed that the local scour depth and length increased by an iterated action of the water level change; however, these values converged after the number of iterated actions reached a certain time. The local scour length at upstream of the bridge pier was approximately 1.8 times larger than the theoretical value, which was calculated through the local scour depth and angle of repose in water. The local scour length is an important parameter for defining the streambed protection zone, which is one of the measures against local scour, and we showed that the streambed protection zone needs to be defined more widely.


2020 ◽  
Vol 68 (1) ◽  
pp. 70-82
Author(s):  
Mohammad Reza Namaee ◽  
Jueyi Sui

AbstractRecent studies have shown that the presence of ice cover leads to an intensified local scour pattern in the vicinity of bridge piers. To investigate the local scour pattern in the vicinity of bridge pier under ice-covered flow condition comparing to that under open channel flow condition, it is essential to examine flow field around bridge piers under different flow conditions. In order to do so, after creation of smooth and rough ice covers, three-dimensional timeaveraged velocity components around four pairs of bridge piers were measured using an Acoustic Doppler velocimetry (ADV). The ADV measured velocity profiles describe the difference between the velocity distributions in the vicinity of bridge piers under different covered conditions. Experimental results show that the vertical velocity distribution which represents the strength of downfall velocity is the greatest under rough covered condition which leads to a greater scour depth. Besides, results show that the turbulent intensity increases with pier size regardless of flow cover, which implies that larger scour depth occurs around piers with larger diameter.


2020 ◽  
Vol 6 (1) ◽  
pp. 69-84 ◽  
Author(s):  
Habibeh Ghodsi ◽  
Mohammad Javad Khanjani

Scour depth prediction is a vital issue in bridge pier design. Recently, good progress has been made in the development of artificial intelligence (AI) to predict scour depth around hydraulic structures base such as bridge piers. In this study, two hybrid intelligence models based on combination of group method of data handling (GMDH) with harmony search algorithm (HS) and shuffled complex evolution (SCE) have been developed to predict local scour depth around complex bridge piers using 82 laboratory data measured by authors and  615 data points from published literature. The results were compared to conventional GMDH models with two kinds of transfer functions called GMDH1 and GMDH2. Based upon the pile cap location, data points were divided into three categories. The performance of all utilized models was evaluated by the statistical criteria of R, RMSE, MAPE, BIAS, and SI. Performances of developed models were evaluated by experimental data points collected in laboratory experiments, together with commonly empirical equations. The results showed that GMDH2SCE was the superior model in terms of all statistical criteria in training when the pile cap was above the initial bed level and completely buried pile cap. For a partially-buried pile cap, GMDH1SCE offered the best performance. Among empirical equations, HEC-18 produced relatively good performances for different types of complex piers. This study recommends hybrid GMDH models, as powerful tools in complex bridge pier scour depth prediction.


2019 ◽  
Vol 8 (2) ◽  
pp. 2439-2446

This experimental study examines the variation of scour depth with time of Clearwater scour condition around compound circular bridge piers for steady flow conditions. Most of the circular bridge piers are resting on the bigger diameter caissons known as the compound circular bridge piers and are widely used in India for construction of road and railways bridge across the rivers. In past studies, it has been observed that most bridge failure occurs because of scouring due to flowing water around a bridge pier across a river. Most of the past studies were done on the uniform bridge pier and a very few studies have been done so far on scouring around non-uniform bridge piers. Estimation of scour depth is required for the economical and a sound design of bridge pier foundation. In present study, an experimental investigation has been done in a tilting flume for computation of rate of change of depth of scour with time at two different models of compound circular bridge piers by varying the foundation top position with respect to level of bed, i.e., 1. The foundation top at the level of bed, and 2. The foundation top below the level of bed (viz. 10mm, 20mm, 30mm and 40mm) for uniform sediments.


2019 ◽  
Vol 5 (9) ◽  
pp. 1904-1916 ◽  
Author(s):  
Abdul-Hassan K. Al-Shukur ◽  
Manar Hussein Ali

The scouring around bridge pier can be considered the most important reasons of bridge failure. Therefore, we investigated by using physical models of piers and we used single pier with square collar , circular collar and interaction of two piers   in laboratory channel, its width 1 m and applied three velocities (0.1, 0.08, and 0.07) m/sec. This experimental investigation was made to choose the optimum shape and location of collar of single pier and comparing it with the interaction of two piers, the results showed that both square and circular collar decrease the scour depth, but the square collar is more effective of reducing scouring and the best location at bed level for single pier, comparing the results of single pier with the interaction of two piers, the interaction of two piers without any countermeasure reduced scour depth about 58%. 


The threat of local scour around bridge piers has been in research for many years. According to the various studies, local scour around the bridge pier is the prime cause for most of the bridge failures. The main objective of the present study was to investigate the flow behavior and the scour phenomenon around the bridge piers of various shapes namely Circular, Elliptical, Square and Streamlined. Local scouring depends on various factors like depth of flow, upstream flow conditions, pier shape and dimensions. Here, we have taken only pier shape as the primary factor and kept other factors constant. The numerical simulations were even carried out using CFDFluent, Eulerian multiphase model, k–epsilon turbulence model, to elaborate the physics behind the scour formation. CFD simulation tool can be used for wide understanding of the flow behavior around the bridge piers even without physical model studies because it saves time and money as compared to experimental studies. Three dimensional simulation of flow behavior around four pier shapes indicates that the streamlined pier is the most efficient pier to use as it allows the flow to pass smoothly around it creating less obstruction to the flow and hence creating less chances of local scouring near the pier toe.


2019 ◽  
Vol 8 (2) ◽  
pp. 2051-2059

Bridge piers having a varying foundation diameter are known as compound bridge piers. In India for the construction of road and railway bridges circular compound bridge piers are mostly adopted. In past studies it has been concluded that 60-70% of bridge failure occurs because of scour around bridge pier across a river due to flowing water. Most of the past studies were done on the uniform bridge pier and a very few studies has been carried out so far on scour around compound bridge piers. For economical design of bridge pier foundation there is a need to determine the scour depth. In the present study, an experimental investigation has been carried out for computation of time variant change of scour depth for two different models of circular compound bridge piers over non-uniform soil for all possible cases of position of footing with respect to level of the bed, i.e., I. Footing at the level of bed, and II. Footing below the level of bed (1cm, 2cm, 3cm and 4cm) for non-uniform sediments


Sign in / Sign up

Export Citation Format

Share Document