scholarly journals Integrating water quality and streamflow into prediction of chemical dosage in a drinking water treatment plant using machine learning algorithms

Author(s):  
Hui Wang ◽  
Tirusew Asefa ◽  
Jack Thornburgh

Abstract Understanding the relationship between raw water quality and chemical dosage is especially important for drinking water treatment plants (DWTP) that have multiple water sources where the ratio of different supply sources could change with seasons or in a matter of weeks in response to changing hydrologic conditions. In this study, the potential for deploying machine learning algorithms, including principal component regression (PCR), support vector regression (SVR) and long short-term memory (LSTM) neural network, are tested to build predictive models. These tools were used to estimate chemical dosage at daily time scale. Influent water quality such as pH, color, turbidity, and alkalinity, as well as chemical dosage including sulfuric acid, ferric sulfate and liquid oxygen were used to build and test these models. An 80/20 percent data split was used for training and testing model performance using correlation coefficients, relative mean square error, relative root mean square error and Nash-Sutcliffe efficiency. Results indicate, compared to PCR, both SVR and LSTM, were able to capture the nonlinear relationship between chemical dose and source water quality changes and displayed higher predictive skills. These types of models have application in real-time operational support without requiring computationally expensive physics-based models.

2020 ◽  
Vol 39 (5) ◽  
pp. 7605-7620 ◽  
Author(s):  
Dhivya Elavarasan ◽  
Durai Raj Vincent

The development in science and technical intelligence has incited to represent an extensive amount ofdata from various fields of agriculture. Therefore an objective rises up for the examination of the available data and integrating with processes like crop enhancement, yield prediction, examination of plant infections etc. Machine learning has up surged with tremendous processing techniques to perceive new contingencies in the multi-disciplinary agrarian advancements. In this pa- per a novel hybrid regression algorithm, reinforced extreme gradient boosting is proposed which displays essentially improved execution over traditional machine learning algorithms like artificial neural networks, deep Q-Network, gradient boosting, ran- dom forest and decision tree. Extreme gradient boosting constructs new models, which are essentially, decision trees learning from the mistakes of their predecessors by optimizing the gradient descent loss function. The proposed hybrid model performs reinforcement learning at every node during the node splitting process of the decision tree construction. This leads to effective utilizationofthesamplesbyselectingtheappropriatesplitattributeforenhancedperformance. Model’sperformanceisevaluated by means of Mean Square Error, Root Mean Square Error, Mean Absolute Error, and Coefficient of Determination. To assure a fair assessment of the results, the model assessment is performed on both training and test dataset. The regression diagnostic plots from residuals and the results obtained evidently delineates the fact that proposed hybrid approach performs better with reduced error measure and improved accuracy of 94.15% over the other machine learning algorithms. Also the performance of probability density function for the proposed model delineates that, it can preserve the actual distributional characteristics of the original crop yield data more approximately when compared to the other experimented machine learning models.


2020 ◽  
Vol 3 (1) ◽  
pp. 328-342
Author(s):  
Sina Moradi ◽  
Anthony Agostino ◽  
Ziba Gandomkar ◽  
Seokhyeon Kim ◽  
Lisa Hamilton ◽  
...  

Abstract The present understanding of how changes in climate conditions will impact the flux of natural organic matter (NOM) from the terrestrial to aquatic environments and thus aquatic dissolved organic carbon (DOC) concentrations is limited. In this study, three machine learning algorithms were used to predict variations in DOC concentrations in an Australian drinking water catchment as a function of climate, catchment and physical water quality data. Four independent variables including precipitation, temperature, leaf area index and turbidity (n = 5,540) were selected from a large dataset to develop and train each machine learning model. The accuracy of the multivariable linear regression, support vector regression (SVR) and Gaussian process regression algorithms with different kernel functions was determined using adjusted R-squared (adj. R2), root-mean-squared error (RMSE) and mean absolute error (MAE). Model accuracy was very sensitive to the time interval used to average climate observations prior to pairing with DOC observations. The SVR model with a quadratic kernel function and a 12-day time interval between climate and water quality observations outperformed the other machine learning algorithms (adj. R2 = 0.71, RMSE = 1.9, MAE = 1.35). The area under the receiver operating characteristic curve method (AUC) confirmed that the SVR model could predict 92% of the elevated DOC observations; however, it was not possible to estimate DOC values at specific sampling sites in the catchment, probably due to the complex local geological and hydrological changes in the sites that directly surround and feed each sampling point. Further research is required to establish potential relationships between climatological data and NOM concentration in other water catchments – especially in the face of a changing climate.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4324
Author(s):  
Moaed A. Abd ◽  
Rudy Paul ◽  
Aparna Aravelli ◽  
Ou Bai ◽  
Leonel Lagos ◽  
...  

Multifunctional flexible tactile sensors could be useful to improve the control of prosthetic hands. To that end, highly stretchable liquid metal tactile sensors (LMS) were designed, manufactured via photolithography, and incorporated into the fingertips of a prosthetic hand. Three novel contributions were made with the LMS. First, individual fingertips were used to distinguish between different speeds of sliding contact with different surfaces. Second, differences in surface textures were reliably detected during sliding contact. Third, the capacity for hierarchical tactile sensor integration was demonstrated by using four LMS signals simultaneously to distinguish between ten complex multi-textured surfaces. Four different machine learning algorithms were compared for their successful classification capabilities: K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and neural network (NN). The time-frequency features of the LMSs were extracted to train and test the machine learning algorithms. The NN generally performed the best at the speed and texture detection with a single finger and had a 99.2 ± 0.8% accuracy to distinguish between ten different multi-textured surfaces using four LMSs from four fingers simultaneously. The capability for hierarchical multi-finger tactile sensation integration could be useful to provide a higher level of intelligence for artificial hands.


2021 ◽  
Author(s):  
Xiaotong Zhu ◽  
Jinhui Jeanne Huang

<p>Remote sensing monitoring has the characteristics of wide monitoring range, celerity, low cost for long-term dynamic monitoring of water environment. With the flourish of artificial intelligence, machine learning has enabled remote sensing inversion of seawater quality to achieve higher prediction accuracy. However, due to the physicochemical property of the water quality parameters, the performance of algorithms differs a lot. In order to improve the predictive accuracy of seawater quality parameters, we proposed a technical framework to identify the optimal machine learning algorithms using Sentinel-2 satellite and in-situ seawater sample data. In the study, we select three algorithms, i.e. support vector regression (SVR), XGBoost and deep learning (DL), and four seawater quality parameters, i.e. dissolved oxygen (DO), total dissolved solids (TDS), turbidity(TUR) and chlorophyll-a (Chla). The results show that SVR is a more precise algorithm to inverse DO (R<sup>2</sup> = 0.81). XGBoost has the best accuracy for Chla and Tur inversion (R<sup>2</sup> = 0.75 and 0.78 respectively) while DL performs better in TDS (R<sup>2</sup> =0.789). Overall, this research provides a theoretical support for high precision remote sensing inversion of offshore seawater quality parameters based on machine learning.</p>


Author(s):  
Pratyush Kaware

In this paper a cost-effective sensor has been implemented to read finger bend signals, by attaching the sensor to a finger, so as to classify them based on the degree of bent as well as the joint about which the finger was being bent. This was done by testing with various machine learning algorithms to get the most accurate and consistent classifier. Finally, we found that Support Vector Machine was the best algorithm suited to classify our data, using we were able predict live state of a finger, i.e., the degree of bent and the joints involved. The live voltage values from the sensor were transmitted using a NodeMCU micro-controller which were converted to digital and uploaded on a database for analysis.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3532 ◽  
Author(s):  
Nicola Mansbridge ◽  
Jurgen Mitsch ◽  
Nicola Bollard ◽  
Keith Ellis ◽  
Giuliana Miguel-Pacheco ◽  
...  

Grazing and ruminating are the most important behaviours for ruminants, as they spend most of their daily time budget performing these. Continuous surveillance of eating behaviour is an important means for monitoring ruminant health, productivity and welfare. However, surveillance performed by human operators is prone to human variance, time-consuming and costly, especially on animals kept at pasture or free-ranging. The use of sensors to automatically acquire data, and software to classify and identify behaviours, offers significant potential in addressing such issues. In this work, data collected from sheep by means of an accelerometer/gyroscope sensor attached to the ear and collar, sampled at 16 Hz, were used to develop classifiers for grazing and ruminating behaviour using various machine learning algorithms: random forest (RF), support vector machine (SVM), k nearest neighbour (kNN) and adaptive boosting (Adaboost). Multiple features extracted from the signals were ranked on their importance for classification. Several performance indicators were considered when comparing classifiers as a function of algorithm used, sensor localisation and number of used features. Random forest yielded the highest overall accuracies: 92% for collar and 91% for ear. Gyroscope-based features were shown to have the greatest relative importance for eating behaviours. The optimum number of feature characteristics to be incorporated into the model was 39, from both ear and collar data. The findings suggest that one can successfully classify eating behaviours in sheep with very high accuracy; this could be used to develop a device for automatic monitoring of feed intake in the sheep sector to monitor health and welfare.


Author(s):  
Sandy C. Lauguico ◽  
◽  
Ronnie S. Concepcion II ◽  
Jonnel D. Alejandrino ◽  
Rogelio Ruzcko Tobias ◽  
...  

The arising problem on food scarcity drives the innovation of urban farming. One of the methods in urban farming is the smart aquaponics. However, for a smart aquaponics to yield crops successfully, it needs intensive monitoring, control, and automation. An efficient way of implementing this is the utilization of vision systems and machine learning algorithms to optimize the capabilities of the farming technique. To realize this, a comparative analysis of three machine learning estimators: Logistic Regression (LR), K-Nearest Neighbor (KNN), and Linear Support Vector Machine (L-SVM) was conducted. This was done by modeling each algorithm from the machine vision-feature extracted images of lettuce which were raised in a smart aquaponics setup. Each of the model was optimized to increase cross and hold-out validations. The results showed that KNN having the tuned hyperparameters of n_neighbors=24, weights='distance', algorithm='auto', leaf_size = 10 was the most effective model for the given dataset, yielding a cross-validation mean accuracy of 87.06% and a classification accuracy of 91.67%.


2013 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A. Grefte ◽  
M. Dignum ◽  
E. R. Cornelissen ◽  
L. C. Rietveld

Abstract. To guarantee a good water quality at the customers tap, natural organic matter (NOM) should be (partly) removed during drinking water treatment. The objective of this research was to improve the biological stability of the produced water by incorporating anion exchange (IEX) for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration) and two IEX configurations (MIEX® and fluidized IEX (FIX)) were compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. Both, MIEX® and FIX were able to remove NOM (mainly the HS fraction) to a high extent. NOM removal can be done efficiently before ozonation and after slow sand filtration. The biological stability, in terms of assimilable organic carbon, biofilm formation rate and dissolved organic carbon, was improved by incorporating IEX for NOM removal. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The total costs for IEX for the three positions were approximately equal (0.0631 € m−3), however the savings on following treatment processes caused a cost reduction for the IEX positions before coagulation and before ozonation compared to IEX positioned after slow sand filtration. IEX positioned before ozonation was most cost effective and improved the biological stability of the treated water.


Sign in / Sign up

Export Citation Format

Share Document