The Pollutant Load Factor of Household Wastewater in Japan

1986 ◽  
Vol 18 (7-8) ◽  
pp. 157-167 ◽  
Author(s):  
Masao Ukita ◽  
Hiroshi Nakanishi ◽  
Masahiko Sekine

The objective of this study was to clarify quantitatively the role of household wastewater as one of the causes of the rapid pollution of nearby water-bodies and to consider the importance of countermeasures at the stage of pollutant load generation. Using mass balance techniques, actual samples and measurements, or by referring to the literature, reliable values of the pollutant load factor of household wastewater were obtained for both the residential and occupational population and after every type of treatment system. Then, to verify the reliability of these values, the flow-out rate of the pollutant load from small river basins was investigated in fine weather. The results show that the proposed values of the pollutant load factor were appropriate, and cesspool night soil and miscellaneous household wastewater are the main causes of the pollution of nearby waterbodies. The results of several experiments show that awareness regarding pollutant load at the stage of its generation, e.g. in cooking and dining, can greatly reduce the pollutant load.

2014 ◽  
Vol 25 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
V. I. Monchenko ◽  
L. P. Gaponova ◽  
V. R. Alekseev

Crossbreeding experiments were used to estimate cryptic species in water bodies of Ukraine and Russia because the most useful criterion in species independence is reproductive isolation. The problem of cryptic species in the genus Eucyclops was examined using interpopulation crosses of populations collected from Baltic Sea basin (pond of Strelka river basin) and Black Sea basin (water-reservoires of Dnieper, Dniester and Danube rivers basins). The results of reciprocal crosses in Eucyclops serrulatus-group are shown that E. serrulatus from different populations but from water bodies belonging to the same river basin crossed each others successfully. The interpopulation crosses of E. serrulatus populations collected from different river basins (Dnipro, Danube and Dniester river basins) were sterile. In this group of experiments we assigned evidence of sterility to four categories: 1) incomplete copulation or absence of copulation; 2) nonviable eggs; 3) absence of egg membranes or egg sacs 4) empty egg membranes. These crossbreeding studies suggest the presence of cryptic species in the E. serrulatus inhabiting ecologically different populations in many parts of its range. The same crossbreeding experiments were carries out between Eucyclops serrulatus and morphological similar species – Eucyclops macruroides from Baltic and Black Sea basins. The reciprocal crossings between these two species were sterile. Thus taxonomic heterogeneity among species of genus Eucyclops lower in E. macruroides than in E. serrulatus. The interpopulation crosses of E. macruroides populations collected from distant part of range were fertile. These crossbreeding studies suggest that E. macruroides species complex was evaluated as more stable than E. serrulatus species complex.


1992 ◽  
Vol 16 ◽  
pp. 173-179
Author(s):  
M.B. Dyurgerov ◽  
M.G. Kunakhovitch ◽  
V.N. Mikhalenko ◽  
A. M. Sokalskaya ◽  
V. A. Kuzmichenok

The total area of glacierization of the Tien Shan in the boundary area of the USSR is about 8000 km2. The computation of mass balance was determined for this area in 12 river basins.In computation procedure, the vertical profile of snow accumulation in these regions and exponential dependence of variation of ablation with altitude are used. Thus the mass balance in each basin, bn, was calculated on the basis of these curves and represented in its relation with the equilibrium line altitude (ELA). It is shown that the relation ELA = f(bn) is linear when the range of bn values is close to zero, and in all altitude intervals this relation can be described by hypsographic curves, in all basins bn positive up to an ELA elevation of 3450 to 3500 m a.s.l. For average annual altitude of ELA, bn is negative for all regions. So the glaciers of these mountains add about 4 km3 of water to the total annual runoff.


1983 ◽  
Vol 14 (3) ◽  
pp. 155-166 ◽  
Author(s):  
Wm. Hogland ◽  
R. Berndtsson

The paper deals with the qualitative and quantitative characteristics of urban discharge. Ratios for urban discharge and recipient flow during different time intervals are presented and discussed. The quality of the urban discharge is illustrated through pollutographs.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
A. Onuchin ◽  
Т. Burenina ◽  
А. Shvidenko ◽  
D. Prysov ◽  
A. Musokhranova

Abstract Background Assessment of the reasons for the ambiguous influence of forests on the structure of the water balance is the subject of heated debate among forest hydrologists. Influencing the components of total evaporation, forest vegetation makes a significant contribution to the process of runoff formation, but this process has specific features in different geographical zones. The issues of the influence of forest vegetation on river runoff in the zonal aspect have not been sufficiently studied. Results Based on the analysis of the dependence of river runoff on forest cover, using the example of nine catchments located in the forest-tundra, northern and middle taiga of Northern Eurasia, it is shown that the share of forest cover in the total catchment area (percentage of forest cover, FCP) has different effects on runoff formation. Numerical experiments with the developed empirical models have shown that an increase in forest cover in the catchment area in northern latitudes contributes to an increase in runoff, while in the southern direction (in the middle taiga) extensive woody cover of catchments “works” to reduce runoff. The effectiveness of geographical zonality in regards to the influence of forests on runoff is more pronounced in the forest-tundra zone than in the zones of northern and middle taiga. Conclusion The study of this problem allowed us to analyze various aspects of the hydrological role of forests, and to show that forest ecosystems, depending on environmental conditions and the spatial distribution of forest cover, can transform water regimes in different ways. Despite the fact that the process of river runoff formation is controlled by many factors, such as temperature conditions, precipitation regime, geomorphology and the presence of permafrost, the models obtained allow us to reveal general trends in the dependence of the annual river runoff on the percentage of forest cover, at the level of catchments. The results obtained are consistent with the concept of geographic determinism, which explains the contradictions that exist in assessing the hydrological role of forests in various geographical and climatic conditions. The results of the study may serve as the basis for regulation of the forest cover of northern Eurasian river basins in order to obtain the desired hydrological effect depending on environmental and economic conditions.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 438
Author(s):  
Jose Luis Diaz-Hernandez ◽  
Antonio Jose Herrera-Martinez

At present, there is a lack of detailed understanding on how the factors converging on water variables from mountain areas modify the quantity and quality of their watercourses, which are features determining these areas’ hydrological contribution to downstream regions. In order to remedy this situation to some extent, we studied the water-bodies of the western sector of the Sierra Nevada massif (Spain). Since thaw is a necessary but not sufficient contributor to the formation of these fragile water-bodies, we carried out field visits to identify their number, size and spatial distribution as well as their different modelling processes. The best-defined water-bodies were the result of glacial processes, such as overdeepening and moraine dams. These water-bodies are the highest in the massif (2918 m mean altitude), the largest and the deepest, making up 72% of the total. Another group is formed by hillside instability phenomena, which are very dynamic and are related to a variety of processes. The resulting water-bodies are irregular and located at lower altitudes (2842 m mean altitude), representing 25% of the total. The third group is the smallest (3%), with one subgroup formed by anthropic causes and another formed from unknown origin. It has recently been found that the Mediterranean and Atlantic watersheds of this massif are somewhat paradoxical in behaviour, since, despite its higher xericity, the Mediterranean watershed generally has higher water contents than the Atlantic. The overall cause of these discrepancies between watersheds is not connected to their formation processes. However, we found that the classification of water volumes by the manners of formation of their water-bodies is not coherent with the associated green fringes because of the anomalous behaviour of the water-bodies formed by moraine dams. This discrepancy is largely due to the passive role of the water retained in this type of water-body as it depends on the characteristics of its hollows. The water-bodies of Sierra Nevada close to the peak line (2918 m mean altitude) are therefore highly dependent on the glacial processes that created the hollows in which they are located. Slope instability created water-bodies mainly located at lower altitudes (2842 m mean altitude), representing tectonic weak zones or accumulation of debris, which are influenced by intense slope dynamics. These water-bodies are therefore more fragile, and their existence is probably more short-lived than that of bodies created under glacial conditions.


2010 ◽  
Vol 4 (1) ◽  
pp. 115-128 ◽  
Author(s):  
R. J. Thayyen ◽  
J. T. Gergan

Abstract. A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April) and south-west monsoon in summer (June–September) dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007) is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is to augment stream runoff during the years of low summer discharge. This paper intends to highlight the importance of creating credible knowledge on the Himalayan cryospheric processes to develop a more representative global view on river flow response to cryospheric changes and locally sustainable water resources management strategies.


Sign in / Sign up

Export Citation Format

Share Document