Improvement of Oxidation Pond Effluent Quality by Sand Filtration

1987 ◽  
Vol 19 (12) ◽  
pp. 355-357
Author(s):  
Isao Somiya ◽  
Shigeo Fujii ◽  
Kaoru Takeda

In this research, the sand filtration process is focused on as one of the techniques for raising the quality of oxidation pond effluent. Based on the data of down-flow filtration experiments, a mathematical model for DO and deposit is developed, and the behavior of the deposit in the sand filter is analyzed. The decomposition of the deposit follows a first-order reaction at a filtration rate higher than 5 m/day, while it follows a zero-order reaction at a rate lower than 1 m/day. From the relationship between deposit and head loss, the maximim quantity of the deposit is determined to be around 0.3 kg/m2 at the rate of 0.5-1 m/day and 0.2 kg/m2 at the rate of 5-10 m/day.

2002 ◽  
Vol 67 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Ljiljana Jelisavac ◽  
Milos Filipovic

A suitable kinetic model for the consumption of stabilizer (diphenylamine) in single base gun propellants was investigated and successfully verified. The model assumes that a reaction of shifting order can be applied for the consumption of diphenylamine in single base gun propellants. It was found that the experimental data were well evaluated by a first-order reaction at high concentrations of diphenylamine in the propellant, but by a zero-order reaction at low concentrations during the final phase of the propellant life time. The mechanism of diphenylamine depletion was discussed with relation to the model and the ageing behavior of the propellants. The kinetic parameters of this model, which permit the calculation of the time up to complete consumption of the diphenylamine, were determined. The results were compared with the kinetic data obtained by a widely accepted model, which combines formally reactions of first and zero order, designated as an "exponential and linear" model. All comparisons gave satisfactory agreement.


2003 ◽  
Vol 38 (4) ◽  
pp. 719-735 ◽  
Author(s):  
Keith D. Kohut ◽  
Susan A. Andrews

Abstract Polydiallyldimethylammonium chloride (polyDADMAC) and epichlorohydrin-dimethylamine (Epi-DMA) stock olutions were prepared, stored for varying amounts of time, and used in bench-scale simulations of coagulation/flocculation/sedimentation to determine whether polymer stock age had an influence on NDMA yields. Stock solution ages ranged from under one hour to fifty hours. PolyDADMAC stock age did not significantly affect NDMA production. Epi-DMA stock age significantly increased NDMA production over a time span of 0 to 5 hours, but not from 5 to 50 hours. The relationship between the change in NDMA yields and Epi-DMA stock solution age may be a first-order reaction or a two-phase process. Statistical evaluation of the data available supports both theories.


2013 ◽  
Vol 634-638 ◽  
pp. 1086-1089
Author(s):  
W. W. Zhao ◽  
J. Q. Gao ◽  
D. H. Liu ◽  
Z. X. Li

The dissolution enthalpy of Cisplatin and Etoposide in the appropriate solvent were measured by RD496-2000 microcalorimeter under the conditions of atmospheric pressure and 309.65 K. The differential heat and the integral heat of the process are obtained, thereby establishing the relationship between the heat and the amount of solute, knowing that the dissolution process is the pseudo-first order reaction. In turn, the half-life, △solHm, △solGm, △solSm are also can obtained.


2011 ◽  
Vol 233-235 ◽  
pp. 481-486
Author(s):  
Wen Bo Zhao ◽  
Ning Zhao ◽  
Fu Kui Xiao ◽  
Wei Wei

The synthesis of dimethyl carbonate (DMC) from urea and methanol includes two main reactions: one amino of urea is substituted by methoxy to produce the intermediate methyl carbamate (MC) which further converts to DMC via reaction with methanol again. In a stainless steel autoclave, the kinetics of these reactions was separately investigated without catalyst and with Zn-containing catalyst. Without catalyst, for the first reaction, the reaction kinetics can be described as first order with respect to the concentrations of methanol and methyl carbamate (MC), respectively. For the second reaction, the results exhibit characteristics of zero-order reaction. Over Zn-containing catalyst, the first reaction is neglected in the kinetics model since its rate is much faster than second reaction. After the optimization of reaction condition, the macro-kinetic parameters of the second reaction are obtained by fitting the experimental data to a pseudo-homogenous model, in which a side reaction of DMC synthesis is incorporated since it decreases the yield of DMC drastically at high temperature. The activation energy of the reaction from MC to DMC is 104 KJ/mol while that of the side reaction of DMC is 135 KJ/mol.


2000 ◽  
Vol 65 (10) ◽  
pp. 715-723 ◽  
Author(s):  
Aleksandra Dakovic ◽  
Magdalena Tomasevic-Canovic ◽  
Vera Dondur ◽  
Aleksandra Vujakovic ◽  
Predrag Radosevic

The kinetics of aflatoxins B1 and G2 adsorption on Ca-clinoptilolite at pH2 and 7, in aqueous electrolyte at 37?C were studied. For both aflatoxins, the adsorption process begins with a fast reaction whereby most of the toxin is adsorbed in the first few minutes. This fast process is followed by the significantly slower process of aflatoxin bonding at active centers of mineral adsorbent. The initial rate method showed that the fast adsorption process of aflatoxin ?1 and G2, at both pH values is a first order reaction, while the slow adsorption process of these aflatoxins is a zero order reaction. The adsorption indexes and adsorption rates for both examined toxins were pH dependent. In the investigated initial toxins concentration ranges (500-3000 ?g/dm3), high adsorption indexes were achieved (> 80 %).


2019 ◽  
Vol 15 (5-6) ◽  
Author(s):  
H. Hadiyanto ◽  
Marcelinus Christwardana ◽  
Meiny Suzery ◽  
Heri Sutanto ◽  
Ayu Munti Nilamsari ◽  
...  

AbstractPhycocyanin is a natural substance that can be used as an antioxidant and food colorant. The quality of phycocyanin deteriorates when it is exposed to heat, and such deterioration is evidenced by decreases in its antioxidant activity and color. Encapsulation, which introduces a coating material over a substance of interest, has been applied to prevent changes in substance quality. The objective of the present research is to evaluate the kinetics of thermal degradation of phycocyanin coated with carrageenan or chitosan. Encapsulated phycocyanin samples were exposed to temperatures of 40, 50, or 60 °C for 90 min, and kinetics of the resulting degradation was evaluated to determine changes in sample quality. The results showed that the thermal degradation of encapsulated phycocyanin at 40–60 °C follows first-order reaction kinetics with reaction rate constants (k) of 4.67–9.17 × 10–5 s-1 and 3.83–7.67 × 10–5 s-1 for carrageenan and chitosan, respectively, and that the k of encapsulated phycocyanin is slower than that obtained from samples without the coating materials (control). Encapsulation efficiencies (EE) of 68.66 % and 76.45 %, as well as loading capacities of 45.28 % and 49.16 %, were, respectively, obtained for carrageenan and chitosan.


1950 ◽  
Vol 34 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Paul H. Kopper ◽  

A "sarcosine oxidase" was prepared from a creatinine-decomposing strain of Pseudomonas aeruginosa. The enzyme is inactivated by drying, lyophilization, and dialysis against distilled water. No dialyzable cofactor was found. Optimal activity of the enzyme is reached at pH 7.8. Enzyme activity is directly proportional to enzyme concentration and also to substrate concentration up to the point of saturation of enzyme with substrate molecules. One molecule of enzyme combines with one molecule of substrate. Data concerning the effect of temperature and of a variety of chemical compounds on the enzyme are presented. Its inactivation by heat follows the course of a first order reaction, and the critical thermal increment between 48° and 52°C. was calculated to be 103,000 calories per mol. The relationship of enzyme concentration to heat inactivation rates is illustrated.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 732
Author(s):  
Ana Beatriz Neves Martins ◽  
Mariana Canto ◽  
Daniel Perrone ◽  
Mariana Monteiro

Jaboticaba (Myrciaria jaboticaba) is a Brazilian berry rich in phenolic compounds, much appreciated for its sweet and slightly acid taste, and highly perishable. Thus, we aimed at producing jaboticaba juice by steam extraction and at investigating its microbiological, sensorial and chemical qualities during storage for up to 168 days. Juice was microbiologically safe and even though unsweetened juice was well accepted, sucrose addition further improved flavor (21%), overall impression (11%) and purchase intent (21%) scores. Cyanidin-3-O-glucoside (C3G) was the major phenolic (40%), followed by gallic (28%) and ellagic acids (21%). Total phenolics contents decreased from 27% (50 °C) to 50% (25 °C), mainly driven by C3G degradation. At 60 °C, total phenolics contents did not change after 42 days since C3G degradation was counterbalanced by gallic acid formation (129%), which followed zero-order reaction kinetics. Anthocyanins degradation followed first-order reaction kinetics (C3G half-life at 25 °C = 21.7 days) and was associated with color changes during storage. In conclusion, steam extraction followed by hot-filling technique ensured a juice with at least six months of shelf life.


Author(s):  
Aashish Poudel

This research was carried out to see the performance of anthracite as filter media in filtration process. The study also aimed to compare two filter media in terms of turbidity it removed, head loss development with time and filter run with increase in influent turbidity. Two rapid gravity filter(RGF) columns were prepared having internal dimensions of 11x11x290 cm3, one with anthracite and another with sand as filter media. The uniformity coefficient of sand and anthracite of 1.54 and 1.4 were maintained from sieve analysis. Constant Filtration rate of 3m/h was set and other ancillary activities were made same for both filter models. The experiments were repeated seven times with different influent turbidity ranges of 0-25, 25-50, 50-100, 100-150, 150-200, 200-250, 250-300 NTU. Both the Filters were back washed with back washing velocity of 24 m/h, when the terminal head loss of 165.4 cm was obtained. The effluent quality of anthracite obtained was better for all the filter run. The head loss development with time was more for sand filter in all filter runs. The filter run time for sand vary from 150 to 8 hours and for anthracite, it varies from 172 to13 hours from first to seventh filter run.


2006 ◽  
Vol 53 (7) ◽  
pp. 185-190 ◽  
Author(s):  
K.Y. Park ◽  
S.K. Maeng ◽  
K. Kim ◽  
J.H. Kweon ◽  
K.H. Ahn

A novel filtration process with synthetic permeable media was investigated for secondary effluent reclamation. Polyurethane was chosen as the filter medium among three tested media. Compressibility and up-flow velocity were changed to determine the optimum operation for the system. An equation was introduced to express the relationship between the removal efficiency and up-flow velocity. In a pilot study, the synthetic medium filtration with compression showed very stable effluent quality without clogging trouble, though the system operated with three times higher filtration rate and much longer backwashing interval than conventional systems.


Sign in / Sign up

Export Citation Format

Share Document