The Removal of Heavy Metals by Using Agricultural Wastes

1993 ◽  
Vol 28 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Y. Orhan ◽  
H. Büyükgüngör

The removal of heavy metals from wastewater using adsorbants such as waste tea, Turkish coffee, exhausted coffee, nut and walnut shells has investigated. Batch studies were conducted at room temperature and adsorption experiments were carried out by shaking 0.3 g of adsorbent with 100 ml synthetic wastewater containing Cr (VI). Cd (II) and A1 (III) metal ions. The remaining concentration of heavy metals in each samples after adsorption at various time intervals was determined spectrophotometrically. Batch studies showed that these adsorbents exhibit a good adsorption potential for A1 (III) metalions. The adsorption ratios of A1(HI) were as 98, 99, 96, 99.5 and 96% for waste tea, Turkish coffee, exhausted coffee, nut and walnut shells, respectively. These results were compared with those obtained using activated carbon as adsorbent. The batch adsorption kinetics and adsorption equilibria were examined and described by a first order reversible reaction and Freundlich isotherm, respectively. The first order rate and isotherm constants have been calculated.

2021 ◽  
Vol 17 (4) ◽  
pp. 1-19
Author(s):  
Azhar Jabbar Bohan ◽  
Ghaed Khalef Salman ◽  
Ghaidaa Majeed Jaid

The effect of Nano composite materials (CuFe2O4 and ZnFe2O4) was studied for removal of heavy metals (Cd (II) and Pb (II)) from wastewater by batch adsorption method and explain their effect on the antimicrobial effectiveness on gram positive and negative bacteria. Nano composite materials were characterized by XRD where the result indicates that the average crystallite sizes were around 36.19 nm for ZnFe2O4 and 12.22 nm for CuFe2O4.The effect of contact time, adsorbent dose, pH and type of adsorbents was used to find the optimum condition for removal of Cd(II) and Pb(II) ions .The equilibrium adsorption data was good fitted to the Langmuir and Freundlich isotherm models, and the pseudo first-order kinetic model showed the excellent fit in adsorption equilibrium capacity. The best pH used for removal was 7. The good removal reaches at the time 45 min for cadmium and need more time for lead. When increasing dosage of adsorbents, the removal efficiency increases. Freundlich and Langmuir isotherm gave the best fit experimental data. Also, antibacterial effects of this nano particles demonstrated the effect of CuFe2O4 NPs on bacteria more than used ZnFe2O4 NPs, and the percentage of bacterial death was increased according to increase the concentration of this materials.


2010 ◽  
Vol 113-116 ◽  
pp. 632-638
Author(s):  
Feng Yu Li ◽  
Xiao Mei Sun ◽  
Bu Hai Li

Batch adsorption experiments were carried out to remove heavy metals Cu(II)and Ni(II) by pyromellitic dianhydride (PMDA) grafted β-Cyclodextrin (β-CD). The effects concerning the pH of the solution, contact time and initial heavy metal concentration were studied and discussed. The adsorption values increased significantly after a large number of carboxyl groups were gragfted on the microspheres surface. In order to investigate the mechanism of sorption, adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was found that kinetic studies showed good correlation coefficients for a pseudo-second-order kinetic model, confirming that the sorption rate was controlled by chemical adsorption. The equilibrium process was better described by the Langmuir isotherm than the Freundlich isotherm. XPS analysis further confirmed that the carboxyl group which grafted on the surface of the β-CD microspheres play a very important role in the removal of heavy metals.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Patience Mapule Thabede ◽  
Ntaote David Shooto ◽  
Thokozani Xaba ◽  
Eliazer Bobby Naidoo

The aim of the present study was to utilise pristine and magnetite-sucrose functionalized Nigella Sativa seeds as the adsorbents for the uptake of chromium(VI) and lead(II) ions from synthetic wastewater. Prestine Nigella Sativa seeds were labelled (PNS) and magnetite-sucrose functionalized Nigella Sativa seeds (FNS). The PNS and FNS composites were characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). The FTIR analysis of both adsorbents revealed the presence of vibrations assigned to 1749 and 1739 cm-1 (-C=O) for ketonic group for both adsorbents. The amide (-NH) peak was observed at 1533 and 1527 cm-1 on FNS and PNS composites, respectively, whilst the carboxyl group (-COOH) were observed at 1408 cm-1 on both adsorbents. The XRD results of FNS and PNS composites showed a combination of spinel structure and y -Fe2O3 phase confirming the formation of iron oxide. The influence of operational conditions such as initial concentration, temperature, pH, and contact time was determined in batch adsorption system. The kinetic data of Cr(VI) and Pb(II) ions on both adsorbents was described by pseudo-first-order (PFO) model which suggested physisorption process. The sorption rate of Cr(VI) ions was quicker, it attained equilibrium in 20 min, and the rate of Pb(II) ions was slow in 90 min. Freundlich isotherm described the mechanism of Pb(II) ions adsorption on PNS and FNS composites. Langmuir best fitted the uptake of Cr(VI) ions on PNS and FNS. The results for both adsorbents showed that the removal uptake of Pb(II) ions increased when the initial concentration was increased; however, Cr(VI) uptake decreased when the initial concentration increased. The adsorption of Cr(VI) and Pb(II) ions on both adsorbents increased with temperature.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4318
Author(s):  
Elie Meez ◽  
Abbas Rahdar ◽  
George Z. Kyzas

The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world’s environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.


2012 ◽  
Vol 14 (4) ◽  
pp. 88-94 ◽  
Author(s):  
R.P. Suresh Jeyakumar ◽  
V. Chandrasekaran

Abstract In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.


2017 ◽  
Vol 18 (4) ◽  
pp. 1406-1419
Author(s):  
F. Elmi ◽  
R. Chenarian Nakhaei ◽  
H. Alinezhad

Abstract This study is the first report of its type demonstrating the synthesis of mHAP on the basis of magnetic functionalization with nHAP, which were synthesized using Rutilus frisii kutum fish scale as a benign fishery waste by-product. The mHAP was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray diffraction (EDX), and Fourier transform infrared (FT-IR) spectroscopic techniques. The XRD pattern confirmed the formation of a single-phase nHAP without any extra steady phases. It was also found that the pseudo-second-order kinetic model gave a satisfactory fit to the experimental data (R2 = 0.99). The maximum removal percentages of Cu and Zn ions in optimal conditions (adsorbent dosage at 0.1 g, 30 min contact time at 25 ± 1 °C and pH = 5 ± 0.1) by mHAP were 97.1% and 93.8%, respectively. Results also demonstrated that mHAP could be recycled for up to five cycles in the case of copper and zinc. The Langmuir isotherm was proved to have a better correlation compared with that of the Freundlich isotherm. The thermodynamic parameters indicated that it was a spontaneously endothermic reaction. In conclusion, mHAP could be regarded as a powerful candidate for efficient biosorbent, capable of adsorbing heavy metals from aqueous solutions.


Inorganics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 40 ◽  
Author(s):  
Lisandra de Castro Alves ◽  
Susana Yáñez-Vilar ◽  
Yolanda Piñeiro-Redondo ◽  
José Rivas

This study reports the ability of magnetic alginate activated carbon (MAAC) beads to remove Cd(II), Hg(II), and Ni(II) from water in a mono-metal and ternary system. The adsorption capacity of the MAAC beads was highest in the mono-metal system. The removal efficiency of such metal ions falls in the range of 20–80% and it followed the order Cd(II) > Ni(II) > Hg(II). The model that best fitted in the ternary system was the Freundlich isotherm, while in the mono-system it was the Langmuir isotherm. The maximum Cd(II), Hg(II), and Ni(II) adsorption capacities calculated from the Freundlich isotherm in the mono-metal system were 7.09, 5.08, and 4.82 (mg/g) (mg/L)1/n, respectively. Lower adsorption capacity was observed in the ternary system due to the competition of metal ions for available adsorption sites. Desorption and reusability experiments demonstrated the MAAC beads could be used for at least five consecutive adsorption/desorption cycles. These findings suggest the practical use of the MAAC beads as efficient adsorbent for the removal of heavy metals from wastewater.


2000 ◽  
Vol 42 (1-2) ◽  
pp. 347-352
Author(s):  
E.H. Smith ◽  
S. Chatterjee

Waste shot-blast fines from surface finishing processes have been demonstrated to be effective for removing heavy metals from solution by adsorption.The technology offers the potential for inexpensive recovery and reuse of a material normally discarded as a solid waste. While metal removals compare favorably with those achieved by commercial sorbents, applications issues such as the impact of background metal-complexing agents require investigation. The presence of oxalic acid, a complexing organic compound, impacted cadmium and lead adsorption in accordance with predictions from metal speciation equilibria; i.e., a small but measurable reduction in lead removal was observed, but cadmium adsorption was relatively unaffected. The effects were repeated in dynamic column experiments, with lead removals reduced by 15 to 20% in the presence of the ligand. Efforts to model adsorption equilibria in the presence of oxalic acid did not fully capture the reduced lead removal, presumably because the model does not consider the complete formation of metal-oxalic acid complexes prior to contact with the sorbent.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Nurul Shuhada Mohd Makhtar ◽  
Juferi Idris ◽  
Mohibah Musa ◽  
Yoshito Andou ◽  
Ku Halim Ku Hamid ◽  
...  

High removal of heavy metals using plant-based bioflocculant under low concentration is required due to its low cost, abundant source, and nontoxicity for improved wastewater management and utilization in the water industry. This paper presents a treatment of synthetic wastewater using plant-based Tacca leontopetaloides biopolymer flocculant (TBPF) without modification on its structural polymer chains. It produced a high removal of heavy metals (Zn, Pb, Ni, and Cd) at a low concentration of TBPF dosage. In our previous report, TBPF was characterized and successfully reduced the turbidity, total suspended solids, and color for leachate treatment; however, its effectiveness for heavy metal removal has not been reported. The removal of these heavy metals was performed using a standard jar test procedure at different pH values of synthetic wastewater and TBPF dosages. The effects of hydroxide ion, pH, initial TBPF concentration, initial metal ion concentration, and TBPF dosage were examined using one factorial at the time (OFAT). The results show that the highest removal for Zn, Pb, Ni, and Cd metal ions were 98.4–98.5%, 79–80%, 97–98%, and 92–93%, respectively, using 120 mg/L dosage from the initial concentration of 10% TBPF at pH 10. The final concentrations for Zn, Pb, Ni, and Cd metal ions were 0.043–0.044, 0.41–0.43, 0.037–0.054, and 0.11–0.13 mg/L, respectively, which are below the Standard B discharge limit set by the Department of Environment (DOE), Malaysia. The results show that TBPF has a high potential for the removal of heavy metals, particularly Zn, Pb, Ni, and Cd, in real wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document