Preoxidation of Chlorophenolic Wastewaters for their Subsequent Biological Treatment

1994 ◽  
Vol 29 (9) ◽  
pp. 313-320 ◽  
Author(s):  
Yue-Hwa Yu ◽  
Szu-Tsong Hu

Industrial wastewaters containing chlorophenolic compounds exhibit various degrees of resistance to biodegradation. Preoxidation of these wastewaters by using ozone as the chemical oxidant has been found previously to be quite effective in promoting their biodegradabilities. This study was made to further investigate whether or not preozonation taking place under different pH conditions would bring about different effects over the following activated-sludge treatment systems. The results indicate that the pH conditions set for the preozonation step did play significant roles in the subsequent biological treatment processes. To the activated sludge system which had not been exposed to chlorophenolic compounds before, preozonation carried out at low or high pH both greatly improved the biodegradabilities of the influents, with the latter condition showing better improvements. Nevertheless, to the activated sludge system previously acclimated to the individual chlorophenolic compounds, the process of preozonation in some cases would then bring about retarding effects over the biodegradabilities of the influent. The phenomena of retardation were generally more apparently observed in the samples which had been preozonated under alkaline conditions.

2004 ◽  
Vol 50 (5) ◽  
pp. 203-208 ◽  
Author(s):  
A. Kloepfer ◽  
R. Gnirss ◽  
M. Jekel ◽  
T. Reemtsma

A number of 2-substituted benzothiazoles that are known to be used as fungicides, corrosion inhibitors and vulcanization accelerators in industry have been analyzed in municipal wastewater and the effluents of activated sludge and membrane bioreactor (MBR) treatment over a three month period. All six analytes were regularly detected in the municipal wastewater by liquid chromatography-mass spectrometry and amount to a total concentration of 3.4 μg/L. Of these compounds benzothiazole-2-sulfonic acid (1,700 ng/L), benzothiazole (850 ng/L) and 2-hydroxybenzothiazole (500 ng/L) were most prominent. The source of the benzothiazole emission is yet unknown. Activated sludge treatment did not reduce total benzothiazole concentration significantly. Removals of the individual compounds ranged from 90% for 2-mercaptobenzothiazole and 70% for hydroxybenzothiazole to 40% for benzothiazole. The concentration of benzothiazole-2-sulfonic acid increased by 20%, whereas 2-methylthiobenzothiazole increased by 160% during activated sludge treatment, likely due to the methylation of mercaptobenzothiazole. Total benzothiazole removal in two parallely operated MBRs was significantly better (43%) than in the conventional activated sludge treatment. Namely benzothiazole and benzothiazole-2-sulfonic acid were more effectively removed. This first systematic study on the occurrence of benzothiazoles in municipal wastewater has shown that this is a relevant class of trace contaminants in municipal wastewater which is only incompletely removed in biological wastewater treatment. Emission from sewage treatment is dominated by the most polar benzothiazole-2-sulfonic acid. MBR treatment may reduce but cannot avoid this emission.


1999 ◽  
Vol 40 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Derin Orhon ◽  
Rüya Taşlı ◽  
Seval Sözen

The paper provides a comprehensive coverage of the experimental information required for the activated sludge treatment of industrial wastewaters. Emphasis is placed upon the choice of parameters for organic carbon removal, the value of basic relationships between major parameters, the merit of size distribution for the evaluation of pretreatment, COD fractionation and its implication in system design, major kinetic and stoichiometric coefficients for process modelling. Relevant experimental data related to a wide range of industrial wastewaters compatible with biological treatment are provided.


2008 ◽  
Vol 57 (1) ◽  
pp. 65-71 ◽  
Author(s):  
T. Okuda ◽  
Y. Kobayashi ◽  
R. Nagao ◽  
N. Yamashita ◽  
H. Tanaka ◽  
...  

Both biological treatment processes including conventional activated sludge (CAS) and biological nutrient removal (BNR) processes, and physico–chemical treatment processes including ozonation process and Title 22 process consisting of coagulation, sedimentation and filtration followed by UV or chlorination disinfection after the above biological processes, were compared from the viewpoint of removal efficiency. 66 pharmaceuticals including antibiotics, analgesics, psychoneurotic agents were measured with SPE-LC/MS/MS. 26 compounds out of 66 were detected in the influent ranging ng/L to μg/L order. Particularly, disopyramide, sulpiride, and dipyridamole that have been rarely detected before in the WWTP, occurred at concentration levels of more than 100 ng/L. The total concentration of the individual pharmaceuticals in the influent was efficiently removed by 80% during the biological treatment. But removal efficiencies of carbamazepine and crotamiton were less than 30%. The total concentration of the individual pharmaceuticals in the effluent from CAS process was 1.5 times higher than that from BNR process. Further, the total concentration of the individual pharmaceuticals in the discharge from WWTPs applying ozonation following activated sludge process was reduced to less than 20%. Physico–chemical treatment train called Title 22 treatment after CAS could not efficiently remove the pharmaceuticals. However, ozonation process followed by biological activated carbon process could efficiently reduce all the residual pharmaceuticals below their quantification limits.


2015 ◽  
Vol 5 (0) ◽  
pp. 9781780402345-9781780402345 ◽  
Author(s):  
F. Cervantes ◽  
S. Pavlostathis ◽  
A. van Haandel

2000 ◽  
Vol 41 (1) ◽  
pp. 223-230 ◽  
Author(s):  
M.F. Sevimli ◽  
A.F. Aydin ◽  
Ì. Öztürk ◽  
H.Z. Sarikaya

The aim of this study is to characterize the wastewater from an opium alkaloid processing plant and to evaluate alternative treatment techniques to upgrade an existing full-scale biological activated sludge treatment plant having problems of high residual COD and unacceptable dark brown color. In this content firstly, long term operational records of the two stage aerobic activated sludge treatment plant of the opium alkaloid factory located in Afyon province of Turkiye were evaluated. The operating results for the last three years were statistically analyzed and median and 95-percentile values were determined for the parameters including chemical and biological oxygen demand (COD and BOD5) and treatment efficiencies. Specific wastewater generation was found as 6.7 m3 per ton of the opium capsule processed. In the following stage of the study, three additional treatment processes were experimentally tested: anaerobic pretreatment, post treatment of aerobically treated effluents with lime and ozone. Pilot scale upflow anaerobic sludge blanket reactor (UASBR) experiments have demonstrated that about 70 percent of the incoming COD can be removed anaerobically. Chemical treatability studies with lime for the aerobically treated effluent have shown that about 78 percent color and 46 percent COD removals can be obtained with lime dosage of 25 gl−1. Post treatment of the effluents of the existing two stage aerobic treatment with ozone also resulted in significant color and COD reduction.


2015 ◽  
Vol 32 (7) ◽  
pp. 637-646 ◽  
Author(s):  
Mariko J. Lust ◽  
Ryan M. Ziels ◽  
Stuart E. Strand ◽  
Heidi L. Gough ◽  
H. David Stensel

2009 ◽  
Vol 59 (2) ◽  
pp. 241-247 ◽  
Author(s):  
K. Sekyiamah ◽  
H. Kim

A wastewater treatment plant consists of unit processes designed to achieve specific waste reduction goals. Offensive odors associated with these treatment processes are a constant source of public complaints. The purpose of this study was to statistically determine the process parameters that influence the formation of volatile sulfur compounds (VSCs) in the secondary treatment system. A statistical model was developed to relate the process parameters to the formation of VSCs in this system. The model established that F/M ratio, sludge blanket depth and SSV60 were the dominant process parameters that influenced the formation of VSCs in the secondary sedimentation basin. This model provides a useful tool for plant engineers to predict and control the VSC formation in a secondary activated sludge treatment system.


2014 ◽  
Vol 26 (11) ◽  
pp. 3261-3264 ◽  
Author(s):  
Hongxiang Chai ◽  
Zhiwen Wei ◽  
Wei Kang ◽  
Yinghua Wei ◽  
Jun Du ◽  
...  

2015 ◽  
Vol 43 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Sándor Guba ◽  
Viola Somogyi ◽  
Erzsébet Szabóné Bárdos

Abstract The degradability of two commercially available pesticides was studied using heterogeneous photocatalytic and activated sludge treatment methods. The first pesticide contained 5% quizalofop-P-ethyl as an active ingredient and petroleum naphtha as a solvent, the latter causing difficulties both in photocatalytic and biological treatment methods. The active ingredient of the second compound was acetamiprid. The photocatalysis proved to be effective both under laboratory conditions (using UV light) and when exposed to sunlight, but the pesticides remained stable during the employed biological treatment. Preliminary information on its behaviour in soil was obtained from transport modelling.


Sign in / Sign up

Export Citation Format

Share Document