Exploring zero discharge potentials for the sustainability of a bottle washing plant

1997 ◽  
Vol 35 (9) ◽  
pp. 181-190 ◽  
Author(s):  
C. Visvanathan ◽  
Anna Marie M. Hufemia

The beverage industry which requires large amounts of good quality water in their processes is a major contributor to the problem of excessive pumping from existing aquifers in Thailand. In view of a government restriction on groundwater withdrawal, an overall water management plan was drawn for the sustainability of a softdrink plant in Bangkok which depends solely on a deepwell source for its water needs. Technologies that can recover water for reuse, minimize raw water input and consequently lead to zero discharge were identified. The overall water balance drawn for this plant revealed that 76% of the raw water consumed daily ends up in the biological wastewater treatment plant (WWTP). A large portion (40%) of this wastewater is generated from the bottle-washing units. By employing microfiltration for polishing of the WWTP effluent, the plant can recover process water for reuse such that, groundwater input is reduced by 40% and liquid discharged to the receiving water by 56%. There are two proposed strategies for recovering rinse water from the bottle-washing units. A microfiltration-reverse osmosis system will purify the rinse water for reuse in the bottle washing process, thereby reducing raw water consumption further to 58% and the liquid discharge by 81.5%. On the other hand, a dual filter media-ion exchange system can reduce raw water input to 57% and the liquid discharge by 80.5%.

2003 ◽  
Vol 3 (4) ◽  
pp. 97-103 ◽  
Author(s):  
B. Durham ◽  
M. Mierzejewski

Increased water demand from population and economic growth, environmental needs, change in rainfall, flood contamination of good quality water and over abstraction of groundwater are all factors that will continue to create water shortage problems. This paper considers alternative solutions, which conform to sustainable solution premises whilst being economically beneficial to the community. The importance of pilot studies is reviewed and the surprises they can uncover. Case studies describe the benefits of long-term operating experience of zero discharge systems reusing the wastewater produced by car manufacture and secondary sewage reuse for a large coal fired power plant. Applications of reuse on large islands such as Hawaii and desert communities are discussed including the production of cash crops with high efficiency irrigation systems by reusing brackish municipal wastewater. Large municipal zero discharge potable water production is also described with an economic comparison of the alternatives.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Arie Herlambang

In the event of natural disasters such as earthquakes, tsunamis, landslides, floods and droughts, water occupies a key role in disaster relief. The presence of water is important for drinking, cooking and support the refugee areas of environmental sanitation and avoiding disaster victims of diseases waterborn disease. Water problem in disaster conditions may occur partly as a result: the disturbance of water sources because change of water quality, to become turbid or salty, the destruction of a piping system, treatment plant damage, disruption of distribution systems, or the scarcity of water in evacuation areas. Introduction of water quality becomes important to determine which process technology will be used and saved investments in emergency conditions. Priority handling of clean water usually comes first in the refugee areas with communal system, because the need of water for bathing, washing and toilet is big enough, while for a drink in the early events during disaster dominated by bottled water, but for their long-term, they have to boil water. For remote areas and difficult to reach individuals who usually use  system more simple and easily operated. Water Supply Technology for emergency response has the characteristic 1). Able to operate with all sorts of water conditions (flexible adaptable), 2). Can be operated easily, 3). Does not require much maintenance, 4). Little use of chemicals, and 5). Portable and easy removable (Mobile System). Keywords :  Water Quality, Water Treatment Technology, Drinking Water, Emergency Response, filtration, ceramic filtration, Ultra filtration, Reverse Osmosis, Ultraviolet Sterilizer, Ozonizer, Disinfection.


2010 ◽  
Vol 5 (4) ◽  
Author(s):  
J. L. Manuszak ◽  
M. MacPhee ◽  
S. Liskovich ◽  
L. Feldsher

The City of Baltimore, Maryland is one of many US cities faced with challenges related to increasing potable water demands, diminishing fresh water supplies, and aging infrastructure. To address these challenges, the City recently undertook a $7M study to evaluate water supply and treatment alternatives and develop the conceptual design for a new 120 million gallon per day (MGD) water treatment plant. As part of this study, an innovative raw water management tool was constructed to help model source water availability and predicted water quality based on integration of a new and more challenging surface water supply. A rigorous decision-making approach was then used to screen and select appropriate treatment processes. Short-listed treatment strategies were demonstrated through a year-long pilot study, and process design criteria were collected in order to assess capital and operational costs for the full-scale plant. Ultimately the City chose a treatment scheme that includes low-pressure membrane filtration and post-filter GAC adsorption, allowing for consistent finished water quality irrespective of which raw water supply is being used. The conceptual design includes several progressive concepts, which will: 1) alleviate treatment limitations at the City's existing plants by providing additional pre-clarification facilities at the new plant; and 2) take advantage of site conditions to design and operate the submerged membrane system by gravity-induced siphon, saving the City significant capital and operations and maintenance (O&M) costs. Once completed, the new Fullerton Water Filtration Plant (WFP) will be the largest low-pressure membrane plant in North America, and the largest gravity-siphon design in the world.


1997 ◽  
Vol 36 (4) ◽  
pp. 127-134 ◽  
Author(s):  
J. C. Liu ◽  
M. D. Wu

A fuzzy logic controller (FLC) incorporating the streaming current detector (SDC) was utilized in the automatic control of the coagulation reaction. Kaolinite was used to prepare synthetic raw water, and ferric chloride was used as the coagulant. The control set point was decided at a streaming current (SC) of −0.05 and pH of 8.0 from jar tests, zeta potential and streaming current measurements. A bench-scale water treatment plant with rapid mix, flocculation, and sedimentation units, operated in a continuous-flow mode, was utilized to simulate the reaction. Two critical parameters affecting the coagulation reaction, i.e., pH and streaming current, were chosen as process outputs; while coagulant dose and base dose were chosen as control process inputs. They were on-line monitored and transduced through a FLC. With raw water of initial turbidity of 110 NTU, residual turbidity of lower than 10 NTU before filtration was obtained. Results show that this combination functions satisfactorily for coagulation control.


2009 ◽  
Vol 60 (7) ◽  
pp. 1875-1883 ◽  
Author(s):  
M. Ahnert ◽  
J. Tränckner ◽  
N. Günther ◽  
S. Hoeft ◽  
P. Krebs

Two different approaches to increase the fraction of combined water treated in the wastewater treatment plant (WWTP) which would otherwise contribute to combined sewer overflows (CSO) are presented and compared based on modelling results with regard to their efficiencies during various rain events. The first option is to generally increase the WWTP inflow according to its actual capacity rather than pre-setting a maximum that applies to worst case loading. In the second option the WWTP inflow is also increased, however, the extra inflow of combined water is bypassing the activated sludge tank and directly discharged to the secondary clarifier. Both approaches have their advantages. For the simulated time series with various rain events, the reduction of total COD load from CSOs and WWTP effluent discharged to the receiving water was up to 20% for both approaches. The total ammonia load reduction was between 6% for the bypass and 11% for inflow increase. A combination of both approaches minimises the adverse effects and the overall emission to the receiving water.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Irwan Azhar

Untuk meningkatkan kualitas layanan pada PDAM Kotabaru mengukur tingkat kepuasan masyarakat atau pelanggan khususnya terhadap kualitas pelayanan air baku Instalasi Pengolahan Air (IPA) Gunung Relly yang dianalisis berdasarkan tingkat kesesuaian hasil perbandingan skor kinerja dengan skor kepentingan (harapan). Apabila TKi­ < 100%, berarti pelayanan belum memuaskan, Apabila TKi­ = 100%, berarti pelayanan telah memuaskan, Apabila TKi­ > 100%, berarti pelayanan sangat memuaskan. Berdasarkan hasil analisis dari 100 responden, diketahui tingkat kualitas pelayanan air baku PDAM Kotabaru dengan analisis importance dan performance matrix didapat tingkat kesesuaian rata-rata (TKi) 73% < 100% masuk dalam kategori belum memuaskan. Variabel yang menjukan untuk mendapat tindakan prioritas perbaikan menurut pelanggan, yakni variabel-variabel pada kuadran I, 1) kualitas air yang disalurkan kerumah pelanggan, 2) kontinuitas debit air yang disalurkan kerumah pelanggan, 3) keramahan dan kesabaran dalam pelayanan pelanggan serta menhadapi pengaduan pelanggan, 4) kelayakan tarif yang diberlakukan. Sehingga perlu evaluasi pada 1) kualitas air, perlu ada filtrasi atau penyaringan sebelum air didistribusikan ke rumah pelanggan sehingga air layak konsumsi 2) Kontinuitas debit air, Perlu pemeliharaan dan penambahan pompa air, deteksi tingkat kebocoran jaringan perpipaan dan penambahan sumber air alternative, 3) Keramahan pelayanan, perlu penyuluhan internal pimpinan terhadap petugas pelayanan untuk meningkatkan kesadaran sebagai perusahaan daerah yang melaksanakan pelayanan publik, 4) Kelayakan tarif, Perhitungan kembali tarif pelayanan disesuaikan dengan layanan yang diberikan. Kata Kunci : Air Baku, Analisis Importance, IPA Gunung Relly, Kualitas Pelayanan, PDAM Kotabaru. To improve the quality of service at PDAM Kotabaru, measure the level of satisfaction of the community or customers, especially the quality of raw water services in the Gunung Relly Water Treatment Plant (IPA) area, which is analyzed based on the level of comparison between performance scores and interest scores (expectations). If TKi <100%, means the service is not satisfactory, If TKi = 100%, means the service has been satisfactory, If TKi > 100%, means the service is very satisfying. Based on the analysis from 100 respondents, have the level of quality of raw water service in PDAM Kotabaru with importance and performance matrix analysis shows that the average level of suitability (TKi) is 73% <100% in the unsatisfactory category. Variables that indicate to get priority improvement actions according to customers, namely variables in quadrant I, 1) quality of water channeled to customers homes, 2) continuity of water flow distributed to customers' homes, 3) friendliness and patience in customer service and dealing with customer complaints, 4) feasibility of tariffs that apply. So it is necessary to evaluate 1) the quality of the water, there needs to be filtration or filtration before the water is distributed to the customer's house so that the water is suitable for consumption 3) Hospitality of services, need internal leadership counseling to service officers to increase awareness as regional companies that carry out public services, 4) Feasibility of tariffs, Re-calculation of service rates according to services provided. Keywords: Importance Analysis, IPA Gunung Relly, Raw Water, PDAM Kotabaru, Service Quality.


2021 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Nadhila Aulia Dwiputri ◽  
Mia Azizah ◽  
Nurlela Nurlela

The water of the Ciliwung river used as raw water for PDAM Depok contains iron and manganese, which levels were quite high and exceeded the quality standard. The purposes of the research are to determine the effectiveness of caporite to reduce levels of iron and manganese to reach levels that meet the standards of Government Regulation Number 82 of 2001. The sample used in this study was the water of the Ciliwung river used as a source of raw water for PDAM Depok with two different water treatment plant (WTP) locations, location 1 in Legong WTP and location 2 in Citayam WTP. Raw water was taken using a submersible water pump located at the bottom of the Ciliwung river. The analytical method used as a reference for determining iron levels was based on the FerroZine Rapid Liquid Method 1970, and for manganese levels was based on 1- (2-Pyridylazo) -2-Naphthol PAN Method 1977, both methods using the Spectrophotometric method. The results showed that iron and manganese levels were quite high, exceeding the standards of Government Regulation No.82 of 2001 with a maximum standard of iron content is 0.3 mg/L, and a maximum standard of manganese level is 0.1 mg/L. After adding a certain dose of chlorine to Ciliwung river water in the Legong and Citayam WTPs, it was found that chlorine effectively reduced Fe and Mn levels because it was able to reduce levels up to 80% and meet the quality standards.Keywords: Caporite, Iron, Manganese, Ciliwung River, RegulationABSTRAKEfektivitas kaporit untuk menurunkan kadar besi dan mangan dalam air sungai Ciliwung sebagai air baku PDAMAir sungai Ciliwung yang digunakan sebagai air baku PDAM Depok terdapat zat besi dan mangan dengan kadarnya cukup tinggi serta melebihi ambang baku mutu. Tujuan penelitian ini untuk mengetahui efektivitas kaporit dalam menurunkan kadar besi dan mangan sehingga memenuhi standar baku mutu Peraturan Pemerintah Nomor 82 Tahun 2001 untuk kelas 1. Sampel air yang digunakan dalam penelitian ini diambil dari 2 titik lokasi Instalasi Pengolahan Air (IPA) yang berbeda, yaitu  dari IPA Legong dan  IPA Citayam. Sampel air baku diambil dengan menggunakan pompa air submersible (pompa celup) yang berada di dasar sungai Ciliwung. Penelitian dilakukan dengan eksperimen jar test di laboratorium. Metode analisis untuk menentukan kadar besi  mengacu pada FerroZine Rapid Liquid Method tahun 1970 dan mangan berdasarkan 1-(2-Pyridylazo)-2-Napthol PAN Method tahun 1977 dengan menggunakan metode Spektrofotometri. Hasil penelitian menunjukan kadar besi dan mangan yang cukup tinggi hingga melebihi standar yang telah ditetapkan dalam PP No.82 Tahun 2001 dengan kadar Fe maksimal 0,3 mg/L dan kadar Mn maksimal 0,1 mg/L. Setelah dilakukan penambahan bahan kimia kaporit ke dalam sampel air sungai Ciliwung  dari  IPA Legong dan Citayam, dengan dosis 10 mg/L untuk penurunan Fe dan 30 mg/L untuk penurunan Mn dapat efektif menurunkan konsentrasi Fe dan Mn  hingga 80%, dan memenuhi  standar baku mutu yang digunakan.Kata Kunci: Kaporit, Besi, Mangan, Sungai Ciliwung, Baku Mutu


2021 ◽  

<p>Regular water treatment-plant (WTP) comprises of a number of units. Of course, problems exist throughout design and operation of the WTP units. Consequently, the current re-search aimed to minimize the shortcomings of the coagulation, sedimentation, and the adsorption methods through applying optimal process for these units. Additionally, eco-nomic analysis and the derivation mathematical models for the new coagulant (Aluminum Chlorohydrate (ACH)) and the traditional aluminum sulphate coagulant (Alum) were an-other objective of this work. Optimum coagulants for alum and ACH were obtained and presented for different raw water turbidities. The optimum settling time of 30 minutes and 40 minutes have been found for the settling of 1000 and 2000 NTU raw water sam-ples. Best dosages of 0.1 and 0.25 g/L of powdered actived carbon (PAC) were obtained for raw water turbidity of 419, and 1000 NTU which increased the removal efficiency of 28.95%, and 25.71%, respectively. Furthermore, the economic study for alum and ACH revealed that using ACH instead of alum led to reduction of cost by 32%. Commonly, it can be concluded that using ACH instead of alum is better because it is cheaper and more efficient. The predicted equations for the optimum dosages (Y) for alum (mg/L) and ACH (µl/L) dosages (X) were Y= 0.04 X + 14.42, and Y = 0.01 X + 0.72, respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document