Improvement of biodegradation of organic substance by addition of phosphorus in biological activated carbon

1997 ◽  
Vol 36 (12) ◽  
pp. 251-257 ◽  
Author(s):  
Wataru Nishijima ◽  
Eiji Shoto ◽  
Mitsumasa Okada

The purposes of this study are to clarify the behavior of phosphorus in coagulation/sedimentation process, and to evaluate the effects of phosphorus addition into biological activated carbon (BAC) treatment on the biodegradation of organic substances. Conventional coagulation/sedimentation reduced phosphorus concentration to very low level, that is, 0.002–0.004 mgP.l−1 in water containing less than 0.063 mgP.l−1. In continuous experiment, the biodegradation rate of glucose in the BAC with adsorbed phosphorus before the start of operation was 5 times higher than that in the BAC without adsorbed phosphorus. The rate of increase in bacterial population was higher in the BAC with adsorbed phosphorus compared to the BAC without adsorbed phosphorus. The biodegradation rate of glucose in the BAC without adsorbed phosphorus increased significantly by addition of phosphorus into influent. Therefore, growth and biodegradation activity of attached bacteria on BAC was limited by phosphorus of low concentration in the influent treated by coagulation/sedimentation. Adsorption of phosphorus on activated carbon before the start of operation and/or addition of phosphorus in influent will be effective to improve the biological activity on BAC.

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2031-2034 ◽  
Author(s):  
W. Nishijima ◽  
M. Tojo ◽  
M. Okada ◽  
A. Murakami

Biodegradation of organic substances by attached bacteria on biological activated carbon (BAC) was studied to clarify the advantages of granular activated carbon (GAC) as support media over conventional media without adsorption capacity with regard to biodegradation activity and community structure of attached bacteria. Anthracite (AN) was used as reference support medium without adsorbability. Low molecular organic substances with different biodegradability and adsorbability (phenol, glucose, benzoic acid and m-aminobenzoic acid) were fed into completely mixed BAC and AN reactors. The rate of biodegradation by BAC reactors fed with biodegradable organic substances was approximately 3 times as high as that by AN reactors. The difference in adsorbability of organic substances onto GAC had little effects on the rate of biodegradation. The structure of GAC with micro and macro pores did not provide better habitat for attached bacteria with regard to the size of population in comparison with anthracite without pores. The rates of biodegradation per attached bacteria for biodegradable organic substances in the BAC reactors were from 1.7 to 4.9 times higher than those in the AN reactors. GAC, as a bacterial support media, stimulated the biodegradation activity of each bacteria without increase in their population and probably with little change in their species composition. Although the number of attached bacteria on BAC was not different significantly from that on anthracite, m-aminobenzoic acid with low biodegradability was degraded only by the GAC reactor.


2002 ◽  
Vol 2 (2) ◽  
pp. 51-58 ◽  
Author(s):  
A. Tiehm ◽  
M. Gozan ◽  
A. Müller ◽  
H. Schell ◽  
H. Lorbeer ◽  
...  

The aim of this study is to develop a long lasting, sequential anaerobic/aerobic biological activated carbon barrier. In the biobarrier, pollutant adsorption on granular activated carbon (GAC) and biodegradation occur simultaneously. Trichloroethene (TCE), chlorobenzene (CB), and benzene were used as model pollutants. In the first barrier, that was operated under anaerobic conditions with sucrose and ethanol as auxiliary substrates, TCE was completely converted to lower chlorinated metabolites, predominantly cis-dichloroethene (cis-DCE). The reductive dechlorination process was stable for about 300 d, although the concomitant sulphate-reducing and methanogenic processes varied considerably. In the second barrier, that was operated with addition of hydrogen peroxide and nitrate, dechlorination was limited by a lack of oxygen and restricted mainly to CB biodegradation. Additional aerobic batch tests revealed that the metabolites of anaerobic TCE dechlorination, i.e. cis-DCE and vinyl chloride, were oxidatively dechlorinated in the presence of suitable auxiliary substrates such as ethene, CB, benzene, or sucrose and ethanol. During periods of low biological activity, elimination of TCE and CB occurred by adsorption in the GAC barriers. The pre-sorbed pollutants were available for subsequent biodegradation resulting in a bioregeneration of the activated carbon barriers.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 429-435 ◽  
Author(s):  
Toshiaki Saito ◽  
Keisuke Hanaki ◽  
Tomonori Matsuo

This research focused on the mechanism of substrate transfer in anaerobic biological activated carbon (BAC) process. There are two possible pathways of substrate supply to the attached bacteria in BAC process. One is the pathway from the bulk liquid and the other is the pathway directly from activated carbon. Stable carbon isotope was used to determine them. The isotope ratio of produced methane was between isotope ratios in bulk liquid and inside activated carbon. This means that activated carbon can supply adsorbed substances directly to the attached bacteria without releasing them into bulk liquid.


1992 ◽  
Vol 15 (10) ◽  
pp. 683-689 ◽  
Author(s):  
Wataru NISHIJIMA ◽  
Mitsuo TOJO ◽  
Mitsumasa OKADA ◽  
Akihiko MURAKAMI

1997 ◽  
Vol 35 (7) ◽  
pp. 155-162 ◽  
Author(s):  
Takashi Kameya ◽  
Tatsuya Hada ◽  
Kohei Urano

Several problems such as unpleasant odor, taste and toxic halogenated organic compounds which are produced by the reaction of organic substances with chlorine that is used for disinfection have occurred in water purification plant for drinking water. Advanced water treatment with biological activated carbon (BAC) has been focused on, but there are few papers about pore volume decrease of activated carbon in BAC. In this study, the changes in cumulative TOC removal and pore volume distribution for two types of activated carbon from a bench-scale apparatus and a mini-column apparatus, to which river water was supplied after coagulation-sedimentation for a period of over 1200 days, were investigated. Adsorption abilities decreased considerably after ca 1000 days and the activated carbons became like sand. The cumulative TOC removals by the adsorption effect were asymptotic to constant values for each empty bed contact time. Though the removal efficiencies for both the activated carbons were approximately equivalent, the pore volume decreases were not uniform. The volume of smaller pores under 2 nm in diameter mainly decreased. Accumulations of minerals such as aluminium and calcium were small, and the pore volume decreases were mainly caused by the accumulation of organic substances. Almost all of the organic substances that accumulated in the activated carbon could be extracted by sodium hydroxide solution. The mean density of the organic substances that accumulated in the activated carbon was estimated to be 0.91 g/ml. Since the pore volume decrease of the activated carbon was small compared with the removal amounts by the adsorption effect, a large amount of organic substances that had adsorbed once disappeared and the pore volume of the activated carbon was regenerated.


1997 ◽  
Vol 35 (7) ◽  
pp. 171-178 ◽  
Author(s):  
Yasushi Takeuchi ◽  
Kazuhiro Mochidzuki ◽  
Noriyuki Matsunobu ◽  
Ryozo Kojima ◽  
Hiroshi Motohashi ◽  
...  

As an advanced water treatment, a combination of ozonation and biological activated carbon (BAC, hereafter) treatment is being applied to purify raw water for municipal use in some cases. The authors examined effects of ozonation on water quality in a batch system, using water samples containing organic substances fractionated to several molecular weight ranges. Also, a flow test of laboratory-scale was performed to study on the capability of the treatment in terms of removal efficiency of the dissolved organic substances, e.g., fumic substances, which preoxidized with ozone. As a result, the changes in equilibrium adsorption and in the biodegradability of organic substances dissolved in water before and after oxidation with ozone were made clear.


2021 ◽  
Vol 43 (1) ◽  
pp. 20-31
Author(s):  
Eun-Young Jung ◽  
Byungryul An ◽  
Heejong Son

Objectives:The correlation between the organic material removal ability of the enhanced BAC process injected by the phosphate (PO4-P) and/or hydrogen peroxide (H2O2) and attached bacterial community was evaluated.Methods:As pilot plant for the purification of raw water downstream of Nakdong river, 4 acrylic columns with an inner diameter of 20 cm and a height of 250 cm were operated at an empty bed contact time of 20 minutes. The four BAC columns are as followed; conventional BAC (control-BAC), enhanced BAC with phosphorus (PO4-P+BAC), enhanced BAC with hydrogen peroxide (H2O2+BAC), and enhanced BAC with phosphorus and hydrogen peroxide (PO4-P+H2O2+BAC). 0.01 mg/L of PO4-P and 1 mg/L of H2O2 were added in influent in the enhanced BAC, respectively. After 18 months of operation, activated carbon was collected from the top of each BAC column and 16S rRNA amplicon sequence analysis was performed.Results and Discussion:The long-term addition of PO4-P and H2O2 contributes the increase of biomass and activity of attached bacteria, respectively. In the attached bacterial community of conventional and enhanced process, Proteobacteria phylum is the most dominant specie and both α-Proteobacteria class and β-Proteobacteria class are also highly present. Each enhanced BAC exhibits very high bacterial community similarity based on the composition of various genera but it is completely different with conventional BAC. In particular, Bradyrhizobium, Sphingomonas, Methylobacterium, Sphingobium, Belnapia, Burkholderia, Polaromonas, and Desulfuromonas, which have excellent metabolism functions for a wide range of organic substrates, are highly dominated in the enhanced BAC process. The concentration of Biodegradable Dissolved Organic Carbon (BDOC) is obtained close to 0.15 mg/L for conventional BAC and less than 0.15 mg/L for enhanced BAC process, respectively. In general, the higher BDOC concentration can result in reducing biostability in water supply and distribution system when the residual chlorine concentration does not meet requirements. As result, less than 0.15 mg/L BDOC accomplished by PO4-P and H2O2 enhances the biostability.Conclusions:Compared to the conventional BAC process, the biomass and activity of attached bacteria and the ratio of the organization composition of the bacteria insides (genus) are considerably higher in the enhanced BAC process. These results achieve higher water quality and improve biostability.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 137-144 ◽  
Author(s):  
K. Miserez ◽  
S. Philips ◽  
W. Verstraete

A number of new technologies for the advanced treatment of wastewater have recently been developed. The oxidative cometabolic transformation by methanotrophs and by nitrifiers represent new approaches in relation to organic carbon. The Biological Activated Carbon Oxidative Filters characterized by thin biofilms are also promising in that respect. Moreover, implementing genetically modified organisms with improved catabolic potential in advanced water treatment comes into perspective. For very refractory effluents chemical support techniques, like e.g. strong chemical oxidation, can be lined up with advanced biology.


Sign in / Sign up

Export Citation Format

Share Document