Wastewater quality relationships with reuse options

2001 ◽  
Vol 43 (10) ◽  
pp. 147-154 ◽  
Author(s):  
R. A. Patterson

The trend towards reuse of effluent for land application of domestic and industrial wastewater is driven by the need to maximise limited water resources and benefit from the plant nutrients available in the effluent. Of significant impact upon the value of the wastewater for reuse is its chemical properties as well as biochemical oxygen demand and suspended solids. While the sewage treatment plant is expected to treat all wastewater received to a minimum environmental standard, no efforts are given to reducing the chemical load derived from uses of chemicals in the domestic household. That the regulation of industry and commerce far exceeds those of the combined effects of thousands of household is remiss of environmental regulators. This paper examines the results of research into the more common sources of chemical additives to the wastewater stream. Twenty five potable water supplies are examined for their salt load, 20 liquid and 40 powder laundry detergents and five dishwashing products were used to simulate discharges to the sewer, measured for their phosphorus, salt and sodium concentrations. The results of the research indicate that choices in the products available for general use within the house can be made only where product labelling and consumer education is improved. Technical improvements in wastewater treatment are not the answer. The improvement in effluent quality will have significant beneficial effects upon land application areas and expand the range of reuse options available for commercial operations.

1998 ◽  
Vol 38 (2) ◽  
pp. 25-32 ◽  
Author(s):  
C. W. Chu ◽  
C. S. Poon ◽  
R. Y. H. Cheung

Chemically Enhanced Primary Treatment (CEPT) or Chemically Assisted Primary Sedimentation (CAPS) is being employed at the new sewage work on Stonecutters Island as part of the Strategic Sewage Disposal Scheme (SSDS) in Hong Kong. CAPS involves the use of chemical coagulants (such as lime or ferric chloride) to induce coagulation or flocculation and let these finely-divided particles form large aggregates (floc) so that they can settle out within a reasonable period of time. In this study, five sludge samples collected from different sewage treatment plants in Hong Kong were physically and chemically characterized. They were chemically modified sludge from Stonecutters Island (CAPS) raw sludge from Tai Po and Yuen Long Sewage Treatment Plant (STP) (rTP & rYL) and anaerobically digested sludge from Tai Po and Yuen Long STP (dTP & dYL). It was found that CAPS sludge was better than other 4 sludge samples in terms of settleability and dewaterability. CAPS sludge contained significant higher amounts (p<0.01) of extractable compounds than other sludges (except NO3− for dTP, NH4+ and PO43− for dYL). The concentration of total N and P in CAPS sludge were significantly higher (p<0.01) than other sludges (except dYL). The concentrations of total Cu, Pb, Ni, Cd, Cr and K in the CAPS sludge were also significantly higher (p<0.01) than other sludge samples. Most of the metals (Cr, Pb, Cr and Zn) in CAPS sludge were associated with the organically-bounded phase. It is concluded that there are significant differences in both physical and chemical properties between the chemically modified sludge and biological treated sludges.


2013 ◽  
Vol 671-674 ◽  
pp. 2736-2741
Author(s):  
Yin An Ming ◽  
Tao Tao

To reuse municipal sewage sludge safely, experiment was carried out on grapefruit trees fertilized with composted sludge from Shiweitou Sewage Treatment Plant in Xiamen City of China, and a method was introduced of how to assess the environmental quality of grapefruit trees soil fertilized with sludge by Set Pair Analysis (SPA) model. The results showed that the soil in the surface layer (0-15cm) and the deeper layer (15-30cm) was less clean, and the environment of soil was not polluted. Thus it was feasible to use sludge as fruit fertilizer. The maximum service life of sludge for continuous land application was estimated by taking Cd as the limiting factor, which would provide scientific guide and technical support for safe land application of sludge.


1970 ◽  
Vol 21 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Mihir Lal Saha ◽  
Ashraful Alam ◽  
Mahbubar Rahman Khan ◽  
Sirajul Hoque

Samples from Pagla sewage treatment plant at different treatment stages showed more or less similar temperature (26.9 - 27.5°C). The pH ranged from 7.2 - 7.9. Influent water and primary sedimentation tank water were brownish in colour while sludge water was light black. The lagoon water and treated water were greenish. The ammonium?nitrogen (NH+4-N) and nitrate?nitrogen (NO-3?N) ranged from 5.24 - 61.94 mg/l and 2.55 - 11.02 mg/l, respectively. Phosphorus of the water was 1.34 - 4.50 mg/l. The suspended solids (SS) ranged from 25.48 ? 374.69 mg/l. In the present study the amount of SS in the treated water were found to be quite satisfactory. The total bacterial population in Pagla sewage treatments plant was in between 2.9 × 104 and 2.5 × 106 cfu/ml. The qualitative bacterial spectrum showed a potential consortium of bacteria associated with the treatment plant. Both Gram positive and Gram negative bacteria were present. Gram positive bacteria were represented by the different species of the genus Bacillus, Aureobacterium and Kurthia. Among them Bacillus was the dominant genus. The different species of Bacillus were Bacillus sphaericus, B. fastidiosus, B. circulans and B. pasteurii. Gram negative bacteria were Zoogloea, Yersinia, Citrobacter and Pseudomonas. A good number of microorganisms were found to be associated with the bio-oxidation of the organic compounds of the influent. The Zoogloea along with other free flowing aerobic heterotrophic bacteria like Bacillus, Pseudomonas could play the major role in the sewage treatment.DOI: http://dx.doi.org/10.3329/dujbs.v21i1.9739 DUJBS 2012 21(1): 1-7


2013 ◽  
Vol 295-298 ◽  
pp. 1380-1383
Author(s):  
Lei Zhu ◽  
Song Liu ◽  
Xun Wang ◽  
Hong Jiao Song

A pharmaceutical factory in Wuhan produces many pharmaceutical wastewaters every day. The wastewater raw water quality indexes are: the concentration of COD,BOD5, NH3-N,TP is 300,000mg/L, 200,000mg/L, 450mg/L,900 mg/L ; By the SBBR treatment, the effluent water quality indexes are:750mg/L,350mg/L,1.20mg/L,5mg/L,and the effluent water can accord with Wastewater quality standards for discharge to municipal sewers (CJ 343-2010) and be discharged after treatment in the sewage treatment plant by municipal sewers.


Irriga ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 671-677
Author(s):  
LIBIANE MARINHO BERNARDINO ◽  
PATRÍCIA DA SILVA COSTA ◽  
VERA LÚCIA ANTUNES DE LIMA ◽  
RENER LUCIANO DE SOUZA FERRAZ

POTENCIAL DE REÚSO DE EFLUENTES TRATADOS PARA IRRIGAÇÃO PERIURBANA NO MUNICÍPIO DE GUARABIRA/PB     LIBIANE MARINHO BERNARDINO1; PATRÍCIA DA SILVA COSTA2; VERA LÚCIA ANTUNES DE LIMA3 E RENER LUCIANO DE SOUZA FERRAZ4.   1 Mestranda em Gestão e Regulação em Recursos Hídricos, Unidade Acadêmica de Tecnologia do Desenvolvimento, UFCG, Rua Luiz Grande, s/n, Frei Damião, CEP 58540-000, Sumé, PB, Brasil, [email protected] 2 Doutoranda em Engenharia Agrícola, Unidade Acadêmica de Engenharia Agrícola, UFCG, Rua Aprigio Veloso, 882, Universitário, CEP 58429-900, Campina Grande, PB, Brasil, [email protected] 3 Profa. Doutora em Engenharia Agrícola, Unidade Acadêmica de Engenharia Agrícola, UFCG, Rua Aprigio Veloso, 882, Universitário, CEP 58429-900, Campina Grande, PB, Brasil, [email protected] 4 Prof. Doutor em Engenharia Agrícola, Unidade Acadêmica de Desenvolvimento Sustentável do Semiárido, UFCG, Rua Luiz Grande, s/n, Frei Damião, CEP 58540-000, Sumé, PB, Brasil, [email protected]     1 RESUMO   A água é um recurso finito que se encontra escasso, o que justifica a busca por gestão e inovação de práticas que a preserve. O objetivo da pesquisa é avaliar o potencial de reúso dos efluentes tratados para irrigação periurbana. Foram levantados dados de uma Estação de Tratamento de Esgotos (ETE), localizada no município de Guarabira, PB, e operada pela Companhia de Água e Esgotos do Estado da Paraíba (CAGEPA), durante o período de janeiro a dezembro de 2019. Analisou-se os seguintes parâmetros físico-químicos e bacteriológicos: Potencial Hidrogeniônico (pH), Condutividade Elétrica (CE), Demanda Bioquímica de Oxigênio (DBO), Demanda Química de Oxigênio (DQO), Sólidos Totais (ST), Oxigênio Dissolvido (OD), Fósforo Total, e Coliformes Termotolerantes. Os dados foram submetidos à análise descritiva e expresso em valores mínimos, máximos e médios. Os indicadores foram satisfatórios para irrigação restrita, porém com a necessidade de tratamento complementar para determinados cultivos. O potencial de reúso   dos efluentes tratados na ETE pode beneficiar uma área de 118,7 ha considerando uma demanda de irrigação de 18.000 m³ ha-1 ano-1, o que demonstra ser um recurso sustentável e que precisa ser regulamentado no Brasil.   Palavras-chave: recursos hídricos, resíduos líquidos, tratamento de água, fertirrigação.     BERNARDINO, L. M.; COSTA, P. S.; LIMA, V. L. A.; FERRAZ, L. R. S. REUSE POTENTIAL OF TREATED EFFLUENTS FOR PERIURBAN IRRIGATION IN THE MUNICIPALITY OF GUARABIRA/PB     2 ABSTRACT   Water is at the center of sustainable development and a finite resource that is in short supply, which justifies the search for management and innovation of practices that preserve it. This research aims to evaluate the potential for reuse of treated effluent for periurban irrigation. Data were collected from a Sewage Treatment Plant (STP), located in the municipality of Guarabira, PB, and operated by the Water and Sewage Company of the State of Paraíba (CAGEPA), during the period from January to December 2019, with the analysis of the following physicochemical and bacteriological parameters: Hipogenic Potential (pH), Electrical Conductivity (CE), Biochemical Oxygen Demand (DBO), Chemical Oxygen Demand (DQO), Total Solids (ST), Dissolved Oxygen (OD), Total Phosphorus, and Thermotolerant Coliforms. The data were submitted to the descriptive analysis and expressed as minimum, maximum and average values. The indicators were satisfactory for restricted irrigation, but with the need for complementary treatment for certain crops. The potential for reuse of the effluents treated in the ETE can benefit an area of 118.7 ha considering an irrigation demand of 18,000 m³ ha-1 year-1, which demonstrates to be a sustainable resource that needs to be regulated in Brazil.   Keywords: Water resources, liquid waste, water treatment, fertigation.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5368 ◽  
Author(s):  
Anna Cristina P. Lima ◽  
Magali C. Cammarota ◽  
Melissa L.E. Gutarra

A residue from the primary treatment of a Wastewater Treatment Plant (WWTP) was used to isolate filamentous fungi with lipase production potential. Two of the 27 isolated fungi presented high hydrolysis index and were selected for lipase production by solid-state fermentation (SSF). The fermentations were conducted at 30 °C for 48 h, with moist air circulation, using 20% (w/w) of the residue mixture with a basal medium (agroindustrial residue—babassu cake), obtaining a solid enzymatic preparation (SEP) with lipase activity of 19 U/g with the fungus identified as Aspergillus terreus. Scum, collected in an anaerobic reactor operating in a WWTP, was hydrolyzed with SEP and subjected to anaerobic biodegradability tests at 30 °C. Different dilutions of crude (Control) or hydrolyzed scum in raw sewage were evaluated. The dilution of 5% (v/v) of hydrolyzed scum in raw sewage proved the most adequate, as it resulted in higher methane yield compared to the raw sewage (196 and 133 mL CH4/g CODadded, respectively), without increasing the chemical oxygen demand (COD) of the treated sewage (138 and 134 mg/L). The enzymatic hydrolysis of the scum, followed by dilution in the influent sewage, is technically feasible and increases methane production in anaerobic reactors.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zarimah Mohd Hanafiah ◽  
Wan Hanna Melini Wan Mohtar ◽  
Hassimi Abu Hasan ◽  
Henriette Stokbro Jensen ◽  
Anita Klaus ◽  
...  

Abstract The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.


1973 ◽  
Vol 8 (1) ◽  
pp. 122-147
Author(s):  
J. D. O’Blenis ◽  
T.R. Warriner

Abstract The current widespread practice of disposal of water filtration plant wastes by direct discharge to receiving waters is coming under critical review by regulatory agencies. Among the alternatives for management of these wastes is the possibility of disposal to sanitary sewer systems. Since a recent nation-wide survey had established alum sludge as the most common waste generated by filtration plants, research was initiated to study the effects of water plant alum sludge on primary sewage treatment. A pilot primary sewage treatment plant was constructed and operated with a raw sewage feed of five litres per minute. A laboratory jar test program was conducted to supplement pilot plant operation. Sludges from two different water purification plants were tested along with alum and combinations of alum and water purification plant sludge for their effects on the removal of suspended solids, chemical oxygen demand (COD) and phosphates. The data showed jar testing to be a good indicator of pilot plant performance. Suspended solids, COD and phosphate removal efficiencies were improved by the addition of the sludges. The phosphate removal capacity of water treatment plant alum sludge was approximately the same as that reported for aluminum hydroxide, or about 1/7 to 1/9 of that determined for alum (as Aluminum). Recycling of the sludges improved phosphate removal performance.


1995 ◽  
Vol 32 (3) ◽  
pp. 79-86
Author(s):  
Louis Vandevenne

The sewage treatment plant studied, located in a rural area, is designed to treat the wastewater for a population of 650. The station functions in accordance with the principle of natural lagoons via artificial wetlands combining macrophytes and microphytes lagoons arranged in series. The overall surface area including the primary lagoon gives rise to a specific load of 6 m2/inhabitant. Both the primary and secondary treatments produce a very good water quality in accordance with the conventional parameters (SS, Suspended Solids; BOD5, the Biological Oxygen Demand over a 5 day period; COD, the Chemical Oxygen Demand). The tertiary purification of the nitrogen and phosphorus does not give as good results as expected, respectively 42% and 35% removal; very little better than those of a conventional installation. The tertiary quality standard appears not to be attainable since the successive biological mechanisms carrying out the elimination process are followed by a release of the pollutants and an insufficient elimination (plant exportation) by the macrophytes. The design and management of the macrophytes basins is relatively tricky, particularly with respect to the removal of weeds and the regulation of the water level in the macrophytes basins.


1994 ◽  
Vol 30 (4) ◽  
pp. 25-34
Author(s):  
M. Ettala ◽  
E. Rossi

Seven operational mishaps were specified on the basis of a questionnaire on wastewater treatment plants, some of them large. In this study a process was developed for screening the chemical spill risks to municipal biological sewage treatment plant. Data on wastewater treatment processes, potential spill sources and chemical properties were combined to determine the threshold chemical quantities which may inhibit the removal of carbonaceous material, prevent nitrification and methanogenesis, cause sludge contamination or lead to the aeration capacity being exceeded. Two sewage treatment plants and eleven industrial sites were chosen for field studies. The influence of spill duration and maintenance activities on threshold quantities are discussed. A field survey lasting 1-2 hours at each site was long enough for the most relevant data to be obtained when the screening method developed was applied. Several chemical spill risks to the plants studied were specified. In addition, cases were identified in which failure of the pretreatment facilities for industrial wastewaters could cause severe mishaps at a biological wastewater treatment plant.


Sign in / Sign up

Export Citation Format

Share Document