Inactivation differences of microorganisms by low pressure UV and pulsed xenon lamps

2003 ◽  
Vol 47 (3) ◽  
pp. 185-190 ◽  
Author(s):  
M. Otaki ◽  
A. Okuda ◽  
K. Tajima ◽  
T. Iwasaki ◽  
S. Kinoshita ◽  
...  

UV disinfection has been applied to water treatment in recent years with low-pressure and medium-pressure UV lamps mainly used as the light source. In general, UV disinfection is considered to be inefficient with water of high turbidity because of inhibition of light penetration. Additionally, photoreactivation may be a problem that should be considered in case a disinfected water is discharged to the environment where sunlight causes reactivation. Recently, other types of lamps have been proposed including a flush-type lamp (such as a pulsed-xenon lamp) that emits high energy and wide wavelength intermittently. In this study, the difference between inactivation efficiencies by low-pressure UV (LPUV) and pulsed-xenon (PXe) lamps was investigated using two coliphage types and three strains of Escherichia coli. PXe had a suppressive effect on photoreactivation rate of the E. coli strains even though there was no significant effect on inactivation rate and maximum survival ratio after photoreactivation. PXe also had a benefit when applied to high turbidity waters as no tailing phenomena were observed in the low survival ratio area although it was observed in LPUV inactivation. This efficiency difference was considered to be due to the difference in irradiated wavelength of both lamps.

2010 ◽  
Vol 77 (3) ◽  
pp. 1145-1147 ◽  
Author(s):  
Anne C. Eischeid ◽  
Karl G. Linden

ABSTRACTAdenoviruses are resistant to monochromatic, low-pressure (LP) UV disinfection—but have been shown to be susceptible to inactivation by polychromatic, medium-pressure (MP) UV—when assayed using cell culture infectivity. One possible explanation for the difference between UV lamp types is that the additional UV wavelengths emitted by MP UV enable it to cause greater damage to viral proteins than LP UV. The objective of this study was to examine protein damage in adenoviruses treated with LP and MP UV. Results show that MP UV is more effective at damaging viral proteins at high UV doses, though LP UV caused some damage as well. To our knowledge, this study is the first to investigate protein damage in UV-treated adenovirus, and the overview presented here is expected to provide a basis for further, more detailed work.


2007 ◽  
Vol 74 (1) ◽  
pp. 327-328 ◽  
Author(s):  
Jiangyong Hu ◽  
Puay Hoon Quek

ABSTRACT Photolyase activity following exposure to low-pressure (LP) and medium-pressure (MP) UV lamps was evaluated. MP UV irradiation resulted in a greater reduction in photolyase activity than LP UV radiation. The results suggest that oxidation of the flavin adenine dinucleotide in photolyase may have caused the decrease in activity.


2013 ◽  
Vol 12 (3) ◽  
pp. 404-409 ◽  
Author(s):  
H. Childress ◽  
B. Sullivan ◽  
J. Kaur ◽  
R. Karthikeyan

The ubiquitous use of antibiotics has led to an increasing number of antibiotic-resistant bacterial strains, including strains that are multidrug-resistant, pathogenic, or both. There is also evidence to suggest that antibiotic resistance genes (ARGs) spread to the environment, humans, and animals through wastewater effluents. The overall objective of this study was to investigate the effect of ultraviolet (UV) light disinfection on antibiotic-resistant bacteria. Wastewater effluent samples from a wastewater treatment plant (WWTP) in Texas were evaluated for differences in tetracycline-resistant bacteria before and after UV treatment. The effects of photoreactivation or dark repair on the reactivation of bacteria present in WWTP effluent after UV disinfection were also examined. Culture-based methods were used to characterize viable heterotrophic, tetracycline-resistant heterotrophic, Escherichia coli, and tetracycline-resistant E. coli bacteria present before and after UV treatment. UV disinfection was found to be as effective at reducing concentrations of resistant heterotrophs and E. coli, as it was at reducing total bacterial concentrations. The lowest survival ratio following UV disinfection was observed in tetracycline-resistant E. coli showing particular susceptibility to UV treatment. Photoreactivation and dark repair rates were found to be comparable to each other for all bacterial populations.


2010 ◽  
Vol 8 (3) ◽  
pp. 479-486 ◽  
Author(s):  
Christie Chatterley ◽  
Karl Linden

Ultraviolet (UV) irradiation is a common disinfection option for water treatment in the developed world. There are a few systems installed in developing countries for point-of-use treatment, but the low-pressure mercury lamps currently used as the UV irradiation source have a number of sustainability issues including a fragile envelope, a lifetime of approximately one year, and they contain mercury. UV light emitting diodes (LEDs) may offer solutions to many of the sustainability issues presented by current UV systems. LEDs are small, efficient, have long lifetimes, and do not contain mercury. Germicidal UV LEDs emitting at 265 nm were evaluated for inactivation of E. coli in water and compared to conventional low-pressure UV lamps. Both systems provided an equivalent level of treatment. A UV-LED prototype was developed and evaluated as a proof-of-concept of this technology for a point-of-use disinfection option, and the economics of UV-LEDs were evaluated.


Author(s):  
Alois W. Schmalwieser ◽  
Georg Hirschmann ◽  
Jutta Eggers ◽  
Regina Sommer

Abstract The high level of acceptance of ultraviolet (UV) irradiation for water disinfection in the past decade is due to the development of quality standards, especially for drinking water disinfection in Europe (Austrian Standards Institute, German Standards Institute). The central parts of a UV-disinfection device are the UV lamps. Despite their importance, their characterisation and quality assurance is far from being a matter of course and had not been regulated so far. This holds especially with regard to their temperature behaviour. The UV radiation (UVR) emittance of Mercury-Low-Pressure- and Amalgam-Low-Pressure-lamps (LP-lamps) depends on temperature. Each lamp type has its own optimal temperature where UVR emittance is highest. At lower or higher temperatures, UVR emittance is reduced. Additionally LP-lamps do not emit homogeneous along their length and this emission profile can change with temperature. In this paper, we present a standardized method to measure the UVR emittance of LP-lamps along the length in water in dependence of water temperature. This method has been included in the updated Austrian standard ÖNORM M 5873-1 (2020) and in the new release DIN 19294-1 (2020). With this method, the UVR emittance of LP-lamps can be characterized and different types of lamps can be compared.


Author(s):  
Leonid S. Bobe ◽  
Nikolay A. Salnikov

Analysis and calculation have been conducted of the process of low-pressure reverse osmosis in the membrane apparatus of the system for recycling hygiene water for the space station. The paper describes the physics of the reverse osmosis treatment and determines the motive force of the process, which is the difference of effective pressures (operating pressure minus osmotic pressure) in the solution near the surface of the membrane and in the purified water. It is demonstrated that the membrane scrubbing action is accompanied by diffusion outflow of the cleaning agent components away from the membrane. The mass transfer coefficient and the difference of concentrations (and, accordingly, the difference of osmotic pressures) in the boundary layer of the pressure channel can be determined using an extended analogy between mass transfer and heat transfer. A procedure has been proposed and proven in an experiment for calculating the throughput of a reverse osmosis apparatus purifying the hygiene water obtained through the use of a cleaning agent used in sanitation and housekeeping procedures on Earth. Key words: life support system, hygiene water, water processing, low-pressure reverse osmosis, space station.


2008 ◽  
Vol 1069 ◽  
Author(s):  
Ryoji Kosugi ◽  
Toyokazu Sakata ◽  
Yuuki Sakuma ◽  
Tsutomu Yatsuo ◽  
Hirofumi Matsuhata ◽  
...  

ABSTRACTIn practical use of the SiC power MOSFETs, further reduction of the channel resistance, high stability under harsh environments, and also, high product yield of large area devices are indispensable. Pn diodes with large chip area have been already reported with high fabrication yield, however, there is few reports in terms of the power MOSFETs. To clarify the difference between the simple pn diodes and power MOSFETs, we have fabricated four pn-type junction TEGs having the different structural features. Those pn junctions are close to the similar structure of DIMOS (Double-implanted MOS) step-by-step from the simple pn diodes. We have surveyed the V-I characteristics dependence on each structural features over the 2inch wafer. Before their fabrication, we formed grid patterns with numbering over the 2inch wafer, then performed the synchrotron x-ray topography observation. This enables the direct comparison the electrical and spectrographic characteristics of each pn junctions with the fingerprints of defects.Four structural features from TypeA to TypeD are as follows. TypeA is the most simple structure as same as the standard pn diodes formed by Al+ ion implantation (I/I), except that the Al+ I/I condition conforms to that of the p-well I/I in the DIMOS. The JTE structure was used for the edge termination on all junctions. While the TypeA consists of one p-type region, TypeB and TypeC consists of a lot of p-wells. The difference of Type B and C is a difference of the oxide between the adjacent p-wells. The oxide of TypeB consists of the thick field oxide, while that of TypeC consists of the thermal oxide corresponding to the gate oxide in the DIMOS. In the TypeD structure, n+ region corresponding to the source in the DIMOS was added by the P+ I/I. The TypeD is the same structure of the DIMOS, except that the gate and source contacts are shorted. The V-I measurements of the pn junctions are performed using the KEITHLEY 237 voltage source meters with semi-auto probe machine. An active area of the fabricated pn junctions TEGs are 150um2 and 1mm2. Concentration and thickness of the drift layer are 1e16cm−3 and 10um, respectively.In order to compare the V-I characteristics of fabricated pn junctions with their defects information that obtained from x-ray topography measurements directly, the grid patterns are formed before the fabrication. The grid patterns were formed over the 2inch wafer by the SiC etching. The synchrotron x-ray topography measurements are carried out at the Beam-Line 15C in Photon-Factory in High-Energy-Accelerator-Research-Organization. Three diffraction conditions, g=11-28, -1-128, and 1-108, are chosen in grazing-incidence geometry (improved Berg-Barrett method).In the presentation, the V-I characteristics mapping on the 2inch wafer for each pn junctions, and the comparison of V-I characteristics with x-ray topography will be reported.


1985 ◽  
Vol 51 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

ABSTRACTNanosecond resolution time-resolved x-ray diffraction measurements of thermal strain have been used to measure the interface temperatures in silicon during pulsed-laser irradiation. The pulsed-time-structure of the Cornell High Energy Synchrotron Source (CHESS) was used to measure the temperature of the liquid-solid interface of <111> silicon during melting with an interface velocity of 11 m/s, at a time of near zero velocity, and at a regrowth velocity of 6 m/s. The results of these measurements indicate 110 K difference between the temperature of the interface during melting and regrowth, and the measurement at zero velocity shows that most of the difference is associated with undercooling during the regrowth phase.


2021 ◽  
Vol 13 (7) ◽  
pp. 3614
Author(s):  
Zeyad Amin Al-Absi ◽  
Mohd Isa Mohd Hafizal ◽  
Mazran Ismail ◽  
Azhar Ghazali

Building sector is associated with high energy consumption and greenhouse gas emissions, which contribute to climate change. Sustainable development emphasizes any actions to reduce climate change and its effect. In Malaysia, half of the energy utilized in buildings goes towards building cooling. Thermal comfort studies and adaptive thermal comfort models reflect the high comfort temperatures for Malaysians in naturally conditioned buildings, which make it possible to tackle the difference between buildings’ indoor temperature and the required comfort temperature by using proper passive measures. This study investigates the effectiveness of building’s retrofitting with phase change materials (PCMs) as a passive cooling technology to improve the indoor thermal environment for more comfortable conditions. PCM sheets were numerically investigated below the internal finishing of the walls. The investigation involved an optimization study for the PCMs transition temperatures and quantities. The results showed significant improvement in the indoor thermal environment, especially when using lower transition temperatures and higher quantities of PCMs. Therefore, the monthly thermal discomfort time has decreased completely, while the thermal comfort time has increased to as high as 98%. The PCM was effective year-round and the optimum performance for the investigated conditions was achieved when using 18mm layer of PCM27-26.


PEDIATRICS ◽  
1984 ◽  
Vol 73 (6) ◽  
pp. 799-805 ◽  
Author(s):  
Robert E. Black ◽  
Kenneth H. Brown ◽  
Stan Becker

Village-based surveillance data from longitudinal studies in rural Bangladesh have been used to evaluate the nutritional consequences of infectious diseases, including diarrhea due to specific pathogens. The prevalences of specific illnesses were related to the ponderal and linear growth of young children for 2-month and 1-year periods. Of the common illnesses, only diarrhea had a significant inverse relationship with increments of weight during 2-month periods and of length during 1 year. Diarrhea accounted for 20% of the difference in linear growth between the study children and the international reference population during the first 5 years of life. Diarrhea associated with enterotoxigenic Escherichia coli had a significant negative effect on the bimonthly weight gain of children in this community and shigellosis had the strongest negative effect on bimonthly and annual linear growth. Control of diarrhea due to enterotoxigenic E coli and Shigella would not only substantially diminish diarrheal morbidity but would also improve the growth of children and thereby reduce the prevalence of protein-energy malnutrition.


Sign in / Sign up

Export Citation Format

Share Document