Biosorption of Pb2 +  and Cd2 +  in a Fixed Bed Column with Immobilised Chorella sp. Biomass

2008 ◽  
Vol 58 (5) ◽  
pp. 1061-1069 ◽  
Author(s):  
Veronica Almaguer Cantu ◽  
Ma Teresa Garza-González ◽  
Javier Rivera de la Rosa ◽  
Jose Angel Loredo-Medrano

The biosorption of Pb2 +  and Cd2 +  in a fixed bed column by immobilised Chlorella sp. was characterised in a fixed bed column. Effect of initial concentration of Pb2 +  and Cd2 + , pH, and pellet size on the biosorption capacity was studied, at laboratory scale, using a factorial experiment design 23, in a 10 cm height × 1 cm of diameter continuous flow column packed with immobilised biomass. Equilibrium uptake of Pb2 +  and Cd2 + , increased with increasing initial metal ion concentration. It was favoured to pH 5, with a pellet of 5 mm of diameter. Langmuir model described the biosorption equilibrium of both metals. The biosorption of each single cation was studied too in a large column (50 cm height × 5 cm of diameter) at bench scale with a range of flow of 40 to 80 mL min−1. The mass transfer coefficient was determined fitting the experimental data to continuity equations that were discretised in the radial terms with orthogonal collocation method.

2017 ◽  
Vol 76 (7) ◽  
pp. 1895-1906 ◽  
Author(s):  
Sowmya Vilvanathan ◽  
S. Shanthakumar

The biosorption capability of Chrysanthemum indicum to remove nickel ions from aqueous solution in a fixed-bed column was examined in this study. Native C. indicum flower waste was improved for its biosorptive potential by pyrolysis to obtain its biochar form and, thereby, both raw (CIF-R) and biochar (CIF-BC) forms of the flower were used for Ni(II) removal. Fixed bed column studies were conducted to examine the influence of bed height (1.0–3.0 cm), flow rate (1.0–5.0 mL min−1) and initial metal ion concentration (25–75 mg L−1). The breakthrough curves (Cout/Cin vs time) were modelled using different dynamic adsorption models, viz. Adams-Bohart, Thomas and Yoon-Nelson model. Interpretation of the data revealed a favorable correlation with the Thomas model with higher R2 values and closer model-predicted and experimental biosorption capacity values. The equilibrium uptake capacity of CIF-R and CIF-BC for Ni(II) were found to be 14.02 and 29.44 mg g−1, respectively. Further, the column was regenerated using HCl as eluent, to desorb the adsorbed Ni(II) ions. The experimental results implied and affirmed the suitability of the biosorbents for nickel ion biosorption with its nature being favorable, efficient, and environmentally friendly.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2309-2312 ◽  
Author(s):  
J. S. D'Avila ◽  
C. M. Matos ◽  
M. R. Cavalcanti

The processes used to remove heavy metals from inorganic wastewater have in general low efficiency. The use of activated peat obtained by using a process similar to a cation exchange reaction increases the removal efficiency up to five times when compared with peat “in natura”. The main objective of this work is to show the fundamental mathematical model, governed by diffusion process and the algorithms utilized to design the batch and the continuous feed stirred tank reactors or in some cases a fixed bed reactor. The principal dimensions of these equipments are obtained from the knowledge of the activated peat's cation exchange capacity used in the process, and the main chemical characteristics of the heavy metal ion contained in the wastewater. Besides, two important parameters are also included: the ion concentration and the efficiency of the process obtained from laboratory kinetics experiments. For example Pb+2 is removed l:rom a wastewater at a concentration of 50g/m3 in five minutes or less, with an efficiency of 98%.


2007 ◽  
Vol 20-21 ◽  
pp. 635-638 ◽  
Author(s):  
Karol Campos ◽  
Eric Guibal ◽  
Francisco Peirano ◽  
M. Ly ◽  
Holger Maldonado

Mercury sorption on chitosan was investigated in batch and continuous systems. Chitosan sorption properties were determined through sorption isotherms. Langmuir and Freundlich equations were used for the modeling of isotherms at pH 5. In batch systems, maximum sorption capacities reached 550 mg Hg/g. Sorption kinetics have been studied as a function of sorbent particle size and stirring rate. Dynamic removal of mercury was tested in a fixed bed reactor investigating the following parameters: particle size, column size, flow velocity and metal ion concentration. Clark and Adams-Bohart models were evaluated for the simulation of breakthrough curves. This study shows that chitosan is an effective sorbent for the treatment and recovery of mercury from dilute effluents at near neutral pH.


2020 ◽  
Vol 32 (4) ◽  
pp. 727-732
Author(s):  
Harish Sharma ◽  
Rajesh Kumar ◽  
Mahesh Chandra Vishwakarma ◽  
Sushil Kumar Joshi ◽  
Narender Singh Bhandari

In present study, Pyras pashia leaves were used as low cost biosorbent to study biosorption of Cu(II), Pb(II) and Cd(II) ions from contaminated wastewater. In the employed batch methods pH, contact time, metal ion concentration, temperature, biosorbent doses were taken as study parameters. The pH was varied from pH 1-9 to study the influence of pH on biosorption of metal ions by Pyras pashia. The optimum pH for the removal of Cu(II), Pb(II) and Cd(II) is observed at pH 5. The biosorption equilibrium time was varied between 15-75 min. Langmuir, Freundlich and Temkin isotherms were employed to study the biosorption. The biosorption parameter fits well with Langmuir isotherm. The biosorption of metal ions was increased with increasing biosorbent dose and contact time while increase in pH, metal ion concentration and temperature decrease the biosorption. Thermodynamic data suggest that the bisorption process was spontaneous, feasible and endothermic.


1996 ◽  
Vol 34 (10) ◽  
pp. 169-177 ◽  
Author(s):  
Marielle Jansson-Charrier ◽  
Eric Guibal ◽  
Jean Roussy ◽  
Robert Surjous ◽  
Pierre Le Cloirec

New wastewater treatments involving biosorption processes are being developed. This work focuses on the dynamic removal of uranium using chitosan in fixed-bed reactors and investigates the main operating parameters: particle size, column size, flow velocity and metal ion concentration. The results confirm the predominant effect of diffusion on the control rate. The optimization of the process should take into account both sorption performances and hydrodynamic behaviour. The process is successfully applied to the treatment of leachates at an abandoned mine site. This study shows that chitosan is an effective sorbent for the treatment and recovery of uranium from dilute effluents.


2018 ◽  
Vol 5 (8) ◽  
pp. 171667 ◽  
Author(s):  
Xiong Liu ◽  
Longqi Xu ◽  
Yaqing Liu ◽  
Wenqi Zhou

Types of resins anchored on citric acid were synthesized and identified. The citric acid-modified resins PS-CA, PS-O-CA and PS-N-CA were synthesized by anchoring citric acid on PS-Cl, PS-OH and PS-NH 2 , respectively. The PS-CA, PS-O-CA and PS-N-CA were used to adsorb Fe 3+ , Al 3+ , Cu 2+ , Pb 2+ , Cd 2+ and Hg 2+ . The influences of pH, adsorption time and metal ion concentration on the adsorption capacities of the resins were investigated. After optimization, PS-CA was a good adsorbent to Fe 3+ , Cu 2+ , Pb 2+ and Cd 2+ with q m values of 143.9 mg g −1 , 77.4 mg g −1 , 18.9 mg g −1 and 119.9 mg g −1 , respectively. PS-N-CA was a good adsorbent to Al 3+ and Hg 2+ with q m values of 176.6 mg g −1 and 114.9 mg g −1 , respectively. The adsorption kinetics and adsorption isotherm experiments indicated that the pseudo-first-order rate equation was more appropriate for characterizing the kinetic data and the Langmuir model was more suitable for fitting the equilibrium data. The reusability of the citric acid-modified resins was also evaluated and these resins exhibited considerable reusability.


MRS Advances ◽  
2018 ◽  
Vol 3 (36) ◽  
pp. 2119-2127 ◽  
Author(s):  
NOMCEBO H. MTHOMBENI ◽  
SANDRINE MBAKOP ◽  
AOYI OCHIENG ◽  
MAURICE S. ONYANGO

AbstractClinoptilolite modified with polypyrrole and iron oxide nanoparticles (Cln-PPy-Fe3O4) nanocomposite as a potential adsorbent for V (V) ions was prepared via polymerization of pyrrole monomer using FeCl3 oxidant in aqueous medium in which clinoptilolite-Fe3O4 nanoparticles were suspended. The structure and morphology of the prepared adsorbent was analysed with the Fourier transform infrared (FTIR) spectrometer, field-emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscope (HR-TEM). Column fixed bed studies were performed to test the ability of the adsorbent to remove V (V) ions from aqueous solution. Low values of adsorbent exhaustion rate (AER) and large bed volumes were observed at lower metal ion concentration, higher bed mass and lower flow rate for V(V) removal indicating good performance. The volume of treated water processed at breakthrough point were found to be 0.09; 0.63 and 1.26 L for bed mass of 1, 2.5; and 5 g, respectively. The Yoon–Nelson and Thomas models appropriately described the breakthrough curves.


2009 ◽  
Vol 71-73 ◽  
pp. 589-592
Author(s):  
S.J. Kleinübing ◽  
Eric Guibal ◽  
Meuris Gurgel Carlos da Silva

Fundamental investigation on adsorption of Cu2+ and Ni2+ ions on Sargassum sp. was performed in fixed-bed column. The Langmuir isotherm fitted well the biosorption equilibrium and the maximum Cu2+ and Ni2+ uptake capacities were 1.35 and 1.06 mmolg- 1, respectively. Mappings of copper and nickel in the algae surface using energy dispersive X-ray spectroscopy indicated a homogeneous distribution of Cu- and Niadsorbent sites. Fourier-transform infrared analysis revealed that the main chemical groups involved in the copper and nickel biosorption were carboxyl, ether, alcoholic, amino, and sulphonic groups.


2018 ◽  
Vol 26 (9) ◽  
pp. 1822-1828 ◽  
Author(s):  
Feng Xue ◽  
Fugang Wang ◽  
Shuai Chen ◽  
Sheng Wang ◽  
Shengui Ju ◽  
...  

2021 ◽  
Vol 287 ◽  
pp. 04006
Author(s):  
Patrick Tan Peng Jun ◽  
Wan Nur Aisyah Wan Osman ◽  
Shafirah Samsuri ◽  
Juniza Md Saad ◽  
Muhamad Fadli Samsudin ◽  
...  

Recent studies have shown great interest toward heavy metal removal due to its hazardous and non-biodegradable properties. Many approaches have been used for this purpose and one of them is adsorption. In this study, several experiments were carried out to investigate the feasibility of factory tea waste as a biosorbent in a fixed-bed adsorption column for heavy metal removal (zinc and copper) in wastewater. The results highlighted that zinc has better performance compared to copper in terms of the effect of initial ion concentration, pH value, and the mixed ions with respect to the removal efficiency. Zinc showed higher removal efficiency and adsorption capacity at the initial metal ion concentration of 200 mg/L, which are 99.21% and 39.68 mg/mg compared to copper. Meanwhile, for the effect of pH values and mixed ion concentration, zinc also showed slightly higher removal efficiency which are 99.91% and 98.47%, respectively compared to copper. However, both zinc and copper showed a better fit to the Langmuir isotherm. The factory tea waste was characterized using Micromeritics ASAP 2020 instrument and results showed that the factory tea waste biosorbent consists of mesopores with the diameter and width of 4.85205 and 2.546985 nm, respectively.


Sign in / Sign up

Export Citation Format

Share Document