Fenton treatment efficacy for the purification of different kinds of wastewater

2009 ◽  
Vol 60 (7) ◽  
pp. 1795-1801 ◽  
Author(s):  
M. Trapido ◽  
N. Kulik ◽  
A. Goi ◽  
Y. Veressinina ◽  
R. Munter

The Fenton chemistry comprises both the classical Fenton reagent and its modification, so-called Fenton-like techniques, which have received great attention as a promising technology for wastewater treatment. In the present study real wastewater from different sources (leachate from oil shale semicoke landfill, pharmaceutical effluents from medical ointment production, municipal landfill leachate and wastewater originated from food-processing) were treated by means of Fenton/Fenton-like systems. The effectiveness of wastewater treatment was assessed by COD removal. Additionally, biodegradability improvement (BOD7/COD) and acute toxicity reduction of investigated wastewater samples were observed. The application of the Fenton chemistry to wastewater samples with different origin resulted generally in 70% or higher COD removal. Thus, the Fenton could be effectively applied both as a single treatment method and pre-treatment step to improve subsequent biodegradability of wastewater effluents.

2020 ◽  
Vol 202 ◽  
pp. 08007
Author(s):  
Wahyu Zuli Pratiwi ◽  
Hadiyanto Hadiyanto ◽  
Purwanto Purwanto ◽  
Muthi’ah Nur Fadlilah

Microalgae-Microbial Fuel Cells (MMFCs) are very popular to be used to treat organic waste. MMFCs can function as an energy-producing wastewater pre-treatment system. Wastewater can provide an adequate supply of nutrients, support the large capacity of biofuel production, and can be integrated with existing wastewater treatment infrastructure. The reduced content of Chemical Oxygen Demand (COD) is one way to measure the efficiency of wastewater treatment. MMFCs reactors are made in the form of two chambers (anode and cathode) both of which are connected by a salt bridge. Tofu wastewater as an anode and Spirulina sp as a cathode. To improve MFCs performance which is to obtain maximum COD removal and electricity generation, nutrient NaHCO3 as the nutrient carbon source for Spirulina sp was varied. The system running phase on 12 days. The results were Spirulina sp treated with MFCs technology has better growth than non-MFCs. The MMFC generated a maximum power density of 21.728 mW/cm2 and achieved 57.37% COD removal. These results showed that the combined process was effective in treating tofu wastewater.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 361-365 ◽  
Author(s):  
D. Abdessemed ◽  
G. Nezzal ◽  
R. Ben Aim

We considered the treatment of domestic wastewater by coagulation–adsorption–ultrafiltration, and a test of adsorption like pre-treatment to the membrane as an alternative for wastewater reclamation and reuse. The performances of two inorganic tubular membranes (M2 and M5 CARBOSEP with 15,000 Da and 10,000 Da MWCO) were studied. Powdered activated carbon was used as adsorbent agent and FeCl3 as a coagulant. Coupling adsorption and ultrafiltration resulted in satisfactory results: the efficiency of COD removal was increased by using PAC compared with results obtained when using only UF membranes.


2019 ◽  
Vol 81 (7) ◽  
pp. 1345-1353 ◽  
Author(s):  
Joanna Boguniewicz-Zablocka ◽  
Iwona Klosok-Bazan ◽  
Vincenzo Naddeo ◽  
Clara A. Mozejko

Abstract The present paper reveals results of research for cost-effective removal of chemical oxygen demand (COD) contained in industrial paper mill effluent. Not only process efficiency but also wastewater treatment costs are discussed. Different pre-treatment processes are applied aiming to investigate the COD removal before discharge to the municipal sewage network. The objective of this paper is to find the optimal operating conditions for the coagulation process. The effects of key operational parameters, including the type of coagulant, initial pH, temperature and coagulant dose, on COD percentage removal were investigated. The laboratory experiments confirmed the high efficiency of chemically enhanced mechanical treatment towards COD. The data obtained show that even low dose of chemicals provides sufficient COD reduction. The initial pH of the wastewater had a significant impact on the COD removal. Under the optimal operational conditions (pH = 7.5, T = 18 °C) the treatment of wastewater from paper industries by coagulation has led to a reduction of 70% COD for wastewater discharged. In terms of the investigated paper industry wastewater, polyaluminium chloride appears to be most suitable for treatment of high COD concentration. However, in an economic evaluation of requirements for wastewater treatment, operating costs and associated saving were such that PAX was more favourable.


2014 ◽  
Vol 685 ◽  
pp. 457-462 ◽  
Author(s):  
Ying Hong Xiang ◽  
Yang Yang Zhong ◽  
Chun Chen

The radioactive organics in wastewater were removed by Fenton reagent. The optimum conditions determined by single-factor test and orthogonal experiment are as following: [H2O2] =1.0mol·L-1, [Fe2+] =6.00mmol·L-1 and 30min at pH=4.0. Under these conditions, the COD removal efficiency was 81%. The dosage of Fe2+ was the most influential factor on organic wastewater COD removal by Fenton and the following influential factors were the reaction time, H2O2 dosage and pH value. In the process of radioactive wastewater treatment by Fenton, the effect of molten iron complexes flocculation was bigger than hydroxyl radical oxidation on COD removal.


Author(s):  
T. C. Prathna ◽  
Ankit Srivastava

Abstract This study was about the feasibility of using ferric chloride as an agent for odour control in wastewater treatment plants (WWTPs) due to hydrogen sulphide emission. Total inlet sulphide concentrations at 11 WWTPs in Delhi were measured and ranged between 1.1 and 14.8 mg/L. Wastewater samples from Najafgarh drain were used in jar tests to estimate the ferric chloride concentration required to obtain acceptable treatment. Ferric chloride was effective in removing sulphide, phosphate and total suspended solids (TSS), and gave significant biological oxygen demand (BOD) reduction. It was ineffective, however, in removing ammoniacal-nitrogen. A dose of 40 mg/L removed 76% of total sulphide, which corresponds to a significant reduction in hydrogen sulphide emission. The study demonstrated that ferric chloride can be used as a cost-effective pre-treatment step in WWTPs to reduce sulphur-related odours significantly, as well as TSS, BOD and phosphate from wastewater.


2017 ◽  
Vol 76 (11) ◽  
pp. 2907-2917 ◽  
Author(s):  
Aysenur Ogedey ◽  
Mehtap Tanyol

Abstract Leachate is the most difficult wastewater to be treated due to its complex content and high pollution release. For this reason, since it is not possible to be treated with a single process, a pre-treatment is needed. In the present study, a batch electrocoagulation reactor containing aluminum and iron electrodes was used to reduce chemical oxygen demand (COD) from landfill leachate (Tunceli, Turkey). Optimization of COD elimination was carried out with response surface methodology to describe the interaction effect of four main process independent parameters (current density, inter-electrode distance, pH and time of electrolysis). The optimum current density, inter-electrode distance, pH and time of electrolysis for maximum COD removal (43%) were found to be 19.42 mA/m2, 0.96 cm, 7.23 and 67.64 min, respectively. The results shown that the electrocoagulation process can be used as a pre-treatment step for leachate.


2015 ◽  
Vol 73 (1) ◽  
pp. 176-181 ◽  
Author(s):  
Audrey Murray ◽  
Banu Örmeci ◽  
Edward P. C. Lai

This study evaluated the use of particles of molecularly imprinted and non-imprinted polymers (MIP and NIP) as a wastewater treatment method for endocrine disrupting compounds (EDCs). MIP and NIP remove EDCs through adsorption and therefore do not result in the formation of partially degraded products. The results show that both MIP and NIP particles are effective for removal of EDCs, and NIP have the advantage of not being as compound-specific as the MIP and hence can remove a diverse range of compounds including 17-β-estradiol (E2), atrazine, bisphenol A, and diethylstilbestrol. Removal of E2 from wastewater was also tested to determine the effectiveness of NIP in the presence of interfering substances and natural organic matter. Removal of E2 from wastewater samples was high and increased with increasing NIP. NIP represent an effective way of removing a wide variety of EDCs from wastewater.


2015 ◽  
Vol 768 ◽  
pp. 506-514
Author(s):  
Chang Xiu Gong ◽  
Jian Guo Jiang

We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U+F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U+F treatment could significantly increase SCOD, TOC, total N, proteins, total P and PO43- concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U+F treatment increased the SCOD by 2.1-and 1.4-fold compared with U and F alone, respectively. U+F treatment increased the total N and P by 1.7-and 2.2-fold, respectively, compared with F alone. This demonstrated that U+F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better.


2017 ◽  
Vol 43 (2) ◽  
pp. 65-73 ◽  
Author(s):  
Jan Paweł Bogacki ◽  
Piotr Marcinowski ◽  
Jeremi Naumczyk ◽  
Piotr Wiliński

Abstract Five cosmetics wastewater samples were treated by Dissolved Air Flotation (DAF) assisted by coagulation. Different aluminum based coagulants were used: (Al2(SO4)3, Al 1019, Al 3010, Al 3030, Al 3035, PAX 16 and PAX 19). The raw wastewater COD values were in the range 285-2124 mg/l. The efficiency of DAF depended on different coagulants and production profi le of factory. COD removal was varied from 11.1 to 77.7%. The efficiency of coagulants was similar during treatment of particular sample. The best results were obtained with Al2(SO4)3 and for sample 5 - lotions and shampoos production. The wastewater from UV fi lter creams production (sample 4) was resistant to treatment by DAF regardless of used coagulant. HS-SPME-GC-MS analysis can be a confirmation of DAF effectiveness


Sign in / Sign up

Export Citation Format

Share Document