Preparation and characterization of fouling-resistant composite membranes based on layer-by-layer self-assembly technique

2011 ◽  
Vol 64 (11) ◽  
pp. 2223-2229 ◽  
Author(s):  
J. L. Duan ◽  
H. M. Zhang ◽  
C. C. Wang ◽  
H. Y. Li ◽  
F. L. Yang

This paper introduces a versatile approach for surface modification of 621-terylene filtration fabric (FF) self-assembled by a dynamic layer-by-layer technique. The hexadecyl trimethyl ammonium bromide (HTAB) and cross-linked polyvinyl alcohol microspheres (PVA-MS) were alternatively deposited on support membrane under a pressure of 0.01 MPa to modify FF. Morphological changes and hydrophilicity of the modified FF were characterized in detail by scanning electron micrograph and water contact angle measurements. Results revealed that PVA-MS could be adsorbed mainly on the surface of FF and water contact angle decreased with the increase of HTAB/PVA-MS bilayer numbers indicating an enhanced hydrophilicity for the modified FF. Backwash experiments of the modified FF exhibited much higher stability of PVA-MS. Protein adsorption experiments were conducted to evaluate the antifouling property of the modified FF. Results indicated that protein adsorption of the membrane surface could be obviously improved by modification, which exhibited superior antifouling property of the modified FF.

Author(s):  
Zhen Shen ◽  
Wei Chen ◽  
Hang Xu ◽  
Wen Yang ◽  
Qing Kong ◽  
...  

Membrane fouling is still a critical issue for the application of ultrafiltration, which has been widely used in water treatment due to its efficiency and simplicity. In order to improve the antifouling property, a new 2D material MXene was used to fabricate composite ultrafiltration membrane with the approach of in situ embedment during the phase inversion process in this study. Scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), water contact angle, bovine serum albumin rejection and porosity measurements were utilized to characterize the prepared membranes. Due to the hydrophilicity of the MXene, the composite membranes obtained higher hydrophilicity, confirmed by the decreased water contact angle. All the modified membranes had a high bovine serum albumin rejection above 90% while that of the pristine polysulfone membrane was 77.48%. The flux recovery ratio and the reversible fouling ratio of the membranes were also improved along with the increasing content of the MXene. Furthermore, the highest flux recovery ratio could also reach 76.1%. These indicated the good antifouling properties of MXene composite membranes. The enhanced water permeability and protein rejection and excellent antifouling properties make MXene a promising material for antifouling membrane modification.


Author(s):  
Choi Yee Foong ◽  
Naznin Sultana

Recently, in the field of tissue engineering, fabrication of three-dimensional (3D) electrospun scaffold or membrane is much emphasized. In this study, layered composite scaffolds or membranes were fabricated using two biodegradable polymers, polycaprolactone (PCL) and Chitosan layer-by-layer with multilayer electrospinning method. Characterizations of membranes were done using several techniques. Electrospun composite membrane’s surface morphology was examined using a Scanning Electron Microscopy (SEM) and the wettability of the material’s surface was determined using water contact angle measuring measurement (WCA). Water uptake properties of electrospun membrane were also determined. Using optimized solution concentration and electrospinning processing parameters, the composite PCL/Chitosan and PCL layer-by-layer were successfully fabricated. It was observed from SEM that the composite electrospun membranes produced consisted microfibers and nanofibers within single scaffold. The water contact angle for the double-layered composite electrospun membranes was lower than the pure PCL. The double-layered composite membrane also had higher water uptake properties compared to pure PCL scaffold.


2015 ◽  
Vol 1120-1121 ◽  
pp. 64-67
Author(s):  
Hong Shao ◽  
Chang Yu Tang ◽  
Mao Bing Shuai ◽  
Ke Qing Xu ◽  
Yuan Lin Zhou ◽  
...  

In this paper, we present a new approachcalled hyperthermal hydrogen induced cross-linking (HHIC) technology,which can successfully enhance the surface wettability of Parylene C (PC) film via cross-linking hydrophilic polyacrylic acid(PAA)on its surface. Water Contact Angle Meter and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterize wetting property, surface chemical structureof PC film before or after HHIC treatment,respectively. The results show that PAA with polar functional groups can be successfully grafted onto the PC film. As a result, the water contact angle of the modified PC membrane surface decreased from 84° to 23°,PC membrane surface wettability is improved effectively.


2012 ◽  
Vol 627 ◽  
pp. 791-795
Author(s):  
Ru Li ◽  
Fen Fen Liu ◽  
Ji Fei Deng

The use of low-temperature plasmas to modify the surface of substrates and grafted acrylic acid is discussed. Their surface composition characterized by attenuated total reflectance fourier transform infrared (ATR-FTIR) spectra and water contact angle. The results of various techniques indicated that acrylic acid could be incorporated in the membrane surface. The plasma treatment time,plasma treatment power and grafting time effect on water contact angle. The water contact angle decreased from 67° for virgin PES to 11° for the plasma-induced and 0° for grafted AA.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Umi Fathanah ◽  
Hesti Meilina

Recently, membrane technology has developed rapidly as a process for water treatment. The membrane process is in demand due to several advantages including being able to work at low temperatures, easier to operate and easy to scale up. Magnesium hydroxide (Mg(OH)2) is an inorganic compound that is inexpensive, non-toxic and hydrophilic, so it has the potential to be used as an additive in membrane fabrication. This study aims to determine the characteristics and performance (permeability and selectivity) of Polyethersulfone (PES) membrane modified with Mg(OH)2, using dimethyl Acetamide (DMAc) as solvent. The membrane was made by blending polymer with phase inversion technique and the characterization carried out included membrane morphological tests, functional group tests, water contact angle tests and evaluating membrane performance by measuring membrane selectivity and permeability. The results showed that the hydroxyl group contained in Mg(OH)2 was able to increase the hydrophilicity which was indicated by a decrease in the water contact angle on the modified membrane to 65o. The Mg(OH)2 additive acts as a pore-forming agent which can be seen in the changes in membrane morphology on the cross-section of the membrane surface. The performance of the membrane resulted in an increase in membrane permeability of 51 L/m2.hour.bar with humid acid rejection of 63%.


2011 ◽  
Vol 418-420 ◽  
pp. 639-642
Author(s):  
Tao Yuan ◽  
Jian Qiang Meng ◽  
Guo Rong Cai ◽  
Yu Feng Zhang

An amphiphilic graft copolymer was obtained via atom transfer radical polymerization (ATRP) of methacrylate (MMA) initiated directly by polyvinylidene fluoride (PVDF). Hydrophilic PVDF membranes were prepared by immersion precipitation of PVDF-g-PMMA and PVDF blend solutions. The chemical structure and the molecular weight were characterized by 1H-NMR and GPC. The hydrophilicity of membrane surfaces were characterized by static water contact angle. Top surface and cross-section of membranes were observed by Field Emission Scanning Electron Microscope (FESEM). The results demonstrated the water contact angle of the membrane surface decreased from 89°to 67°, indicating enhanced hydrophilicity; the pure water flux water firstly decreased and then increased up to 1.7 times of the PVDF membrane. The retention of PEG (Mn=6000) could be maintained at 93%-95%.


2018 ◽  
Vol 18 (4) ◽  
pp. 587 ◽  
Author(s):  
Alfa Akustia Widati ◽  
Nuryono Nuryono ◽  
Dessy Puspa Aryanti ◽  
Madjid Arie Wibowo ◽  
Eko Sri Kunarti ◽  
...  

In this study water repellent layered glass has been prepared by coating silica (SiO2) combined with a hydrophobic silane compound. SiO2 was extracted from rice hull ash and two silane compounds, namely hexadecyltrimethoxysilane (HDTMS) and trimethylchlorosilane (TMCS) were used. Coating was performed through two deposition techniques, i.e. one step (mono-layer) and layer by layer (LBL, multi-layer). The effect of silane to SiO2 mole ratio, silane type and layer number on the glass characters was evaluated. Characterization included hydrophobicity, transparency, surface roughness and stability of coating. Results showed that increasing the mole ratio of silane to SiO2 and the layer number increased the hydrophobicity of the glass surface. The optimum mole ratio was 5:1 and the significant increase of contact angle occurred at lower mole ratio, but the stability tends to be increased at higher mole ratio. For HDTMS-SiO2 layer, the technique of LBL technique produced a coating with higher hydrophobicity and transparency than single-stage one. The LBL technique produced the highest water contact angle of 103.7° with transmittance of 96%, while for TMCS-SiO2 layer the one stage technique produced hydrophobic layer with higher water contact angle of 108.0° and transparency about 94.52%. The prepared hydrophobic glasses were relatively stable in polar and non-polar solvents, but unstable to ambient conditions.


2019 ◽  
Vol 17 (1) ◽  
pp. 798-805 ◽  
Author(s):  
Alfa Akustia Widati ◽  
Nuryono Nuryono ◽  
Indriana Kartini

AbstractThis research work presents the design of a mixture of SiO2/TiO2 that increases the surface roughness and hydrophobicity of methyltrimethoxysilane (MTMS) coated glass. The deposition of SiO2, TiO2, and MTMS were conducted using a layer by layer dip coating technique. The SiO2/TiO2 coating was derived from complete hydrolysis of tetraethylorthsilicate and titanium tetraisopropoxide. In order to evaluate and compare the performance of SiO2/TiO2/MTMS coated glass, the SiO2/SiO2/MTMS and TiO2/TiO2/MTMS were also fabricated. SiO2/TiO2/MTMS samples displayed the highest water contact angle. The topography of surfaces showed that SiO2/TiO2/MTMS exposed higher surface roughness with micro-nanoscale structures. The sequence of SiO2 and TiO2 influenced the water contact angle and the stability of the coatings. SiO2/TiO2/MTMS produced higher contact angle and stability than TiO2/SiO2/MTMS.


e-Polymers ◽  
2016 ◽  
Vol 16 (2) ◽  
pp. 111-115
Author(s):  
Gao Jinglong ◽  
Ni Zaochun ◽  
Liu Yanhui

AbstractThe effect of electron beam (EB) irradiation on polytetrafluoroethylene (PTFE) film was studied in air at room temperature. The structural changes of the PTFE film irradiated by EB were determined by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). The morphological changes on the film surface were described using scanning electron microscopy (SEM). The surface hydrophilicity of the modified film was characterized through water contact angle measurement. The results show that scission of the chain on the surface of PTFE film was induced by EB irradiation. The atomic ratio of F/C decreased and the atomic ratio of O/C increased. The surface roughness of the irradiated sample increased. In the case of irradiation in the presence of residual air, carboxylic acid fluoride groups appear and can hydrolyze to carboxylic groups in the surface-near regions. These polar groups significantly reduced the hydrophobicity and oleophobicity of the PTFE film and consequently cause the decline of the water contact angle of the film surface. XRD analysis reveals an increase of the crystallite size of PTFE along with the increasing time of the irradiate.


Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 160
Author(s):  
Asmaa Elrasheedy ◽  
Mohammed Rabie ◽  
Ahmed El-Shazly ◽  
Mohamed Bassyouni ◽  
S.M.S. Abdel-Hamid ◽  
...  

The effect of compositing multiwalled carbon nanotubes (MWCNTs) with polystyrene (PS) to fabricate nanofibrous membrane by electrospinning technique and comparing the direct contact membrane distillation (DCMD) performance of the blank and composite membranes is evaluated numerically. Surface morphology of both the pristine and the composite membrane was studied by SEM imaging while the average fiber diameter and average pore size were measured using ImageJ software. Static water contact angle and porosities were also determined for both membranes. Results showed significant enhancement in both the hydrophobicity and porosity of the composite membrane by increasing the static water contact angle from 145.4° for the pristine PS membrane to 155° for the PS/MWCNTs composite membrane while the porosity was increased by 28%. Simulation results showed that at any given feed inlet temperature, the PS/MWCNTs membrane have higher permeate flux and better overall system performance.


Sign in / Sign up

Export Citation Format

Share Document