Removal of bacteriophages with different surface charges by diverse ceramic membrane materials in pilot spiking tests

2012 ◽  
Vol 66 (1) ◽  
pp. 151-157 ◽  
Author(s):  
B. Hambsch ◽  
M. Bösl ◽  
I. Eberhagen ◽  
U. Müller

This study examines mechanisms for removal of bacteriophages (MS2 and phiX174) by ceramic membranes without application of flocculants. The ceramic membranes considered included ultra- and microfiltration membranes of different materials. Phages were spiked into the feed water in pilot scale tests in a waterworks. The membranes with pore sizes of 10 nm provided a 2.5–4.0 log removal of the phages. For pore sizes of 50 nm, the log removal dropped to 0.96–1.8. The membrane with a pore size of 200 nm did not remove phages. So, the removal of both MS2- and phiX174-phages depended on the pore size of the membranes. But apart from pore size also other factors influence the removal of phages. Removal was 0.5–0.9 log higher for MS2-phages compared with phiX174-phages. Size exclusion seems to be the major but not the only mechanism which influences the efficiency of phage removal by ceramic membranes.

2009 ◽  
Vol 59 (11) ◽  
pp. 2213-2218 ◽  
Author(s):  
Le Jin ◽  
How Yong Ng ◽  
Say Leong Ong

The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.


2006 ◽  
Vol 1 (1) ◽  
pp. 79-83 ◽  
Author(s):  
Zhongping Huang ◽  
Weiming Zhang ◽  
Jianping Yu ◽  
Dayong Gao

The nonuniformity of pore size and pore distribution of the current hemodialysis membrane results in low efficiency of uremic solute removal as well as the loss of albumin. By using nanotechnology, an anodic alumina membrane (ceramic membrane) with self-organized nanopore structure was produced. The objective of this study was to fabricate nanoporous alumina membranes and investigate the correlation between various anodization conditions and the pore characteristics in order to find its potential application in artificial kidney/hemodialysis. An aluminum thin film was oxidized in two electrolytes consisting of 3% and 5% sulfuric acid and 2.7% oxalic acid. The applied voltages were 12.5, 15, 17.5, and 20V for sulfuric acid and 20, 30, 40, and 50V for oxalic acid. Pore size and porosity were determined by analyzing Scanning Electron Microscopy (SEM) images and hydraulic conductivity was measured. Results show that pore size increased linearly with voltage. Acid concentration affected pore formation but not pore size and pore distribution. Hydraulic conductivity of the ceramic membrane was higher than that of the polymer dialysis membrane. The optimal formation conditions for self-organized nanopore structure of the ceramic membrane were 12.5-17.5V in 3–5% sulfuric acid at 0°C. Under these conditions, ceramic membranes with pores size of ∼10nm diameter can be produced. In conclusion, we used anodic alumina technology to reliably produce in quantity ceramic membranes with a pore diameter of 10-50nm. Because of more uniform pore size, high porosity, high hydraulic conductivity, and resistance to high temperature, the ceramic membrane has the potential application as a hemodialysis membrane.


2017 ◽  
Vol 14 ◽  
pp. 60-85
Author(s):  
H. Lucena Lira ◽  
R.C. de Oliveira Lima ◽  
Iliana Oliveira Guimarães ◽  
G. Araújo Neves ◽  
R. Nóbrega Tavares ◽  
...  

Industrial wastes reuse becomes attractive to raw materials economy and to avoid environmental problems. The aim of this study is to develop and characterize tubular ceramic membranes using in their composition inorganic residues generated in the industries, such as, granite, alumina residue from calcination process and kaolin. Initially, it was performed the physical chemical and mineralogical characterization of the residues. Different formulations of ceramic masses have been studied with incorporation of residue, clay and additives for producing tubular membranes through the extrusion process. The membranes were characterized by SEM and flow measurements with distilled water. The membranes were applied to effluent treatment from textile and oil industry. The granite residue showed a high content of SiO2and Al2O3in its chemical composition and significant amount of iron and calcium oxides resulting from the granite processing. The granite residue presented average particle size of 13.98 µm. The residue from alumina process contain gibbsite and α-alumina, and average particles size of 15.68 µm. The residue from kaolin processing presented high content of quartz and alumina and average particles size of 29.0 µm. The tubular membrane produced with granite residue presented porosity from 17 to 30%, pores size in the range of 0.06 to 0.14µm and water flow from 10 (at 2 Bar) to 24 L/h.m2(at 4 Bar). These membranes retained 100% of indigo particles and was effective in the separation of indigo. The membrane prepared with alumina residue presented porosity close to 58% , pore size of 0.96 µm and water flow from 68 to 80 L/h.m2(at 2 Bar). These membranes were applied with successes in the separation of water from emulsion (100 ppm oil/water) with rejection above 96%. The membrane prepared with kaolin residue presented pore size from 0.16 to 0.22 µm, porosity from 41 to 44% and water flow from 53 to 70 L/h.m2. The ceramic membranes with industrial residues were successfully produced and applied in the treatment of industrial effluents.


2019 ◽  
Vol 4 (1) ◽  
pp. 11
Author(s):  
Sisnayati Sisnayati ◽  
Ria Komala ◽  
Retno Suryani

This study aims to study how the effect of adding rice husk additives to the characteristics of ceramic membranes with various variations of membrane-forming component composition in terms of surface morphology and pore size of the membrane produced. This research is expected to be used by the community as an alternative treatment of river water into clean water. In this study, the variables studied were the composition of the membrane constituent namely clay, iron powder and rice husk  as an additives. The ceramic membrane was designed in the form of a tube, made from a mixture of clay, iron powder and rice husk with a diameter of 5 cm, an outer diameter of 6 cm, a thickness of 1 cm and a length of 25 cm. Housing membrane was made of glass fiber with an outer diameter of 9 cm, an inner diameter of 8.5 cm and a length of 30 cm. Making ceramic membranes were from clay, iron powder and rice husk with a ratio of 87.5%, 2.5%, 10%, 77.5%, 2.5%, 20% and 77.5%, 2.5%, 15%.  The river water was treated by flowing to the complete separation process. It was taken every 15 minutes, 30 minutes, 45 minutes, 60 minutes, 75 minutes, 90 minutes. Every sampling, the permeate volume was determined. Permeat events were analyzed for chemical parameters in the form of iron (Fe), Manganese (Mn) and Zinc (Zn). Based on the SEM-EDS analysis on the ceramic membrane produced shows that the membrane was classified in the microfiltration membrane group with a random and asymmetrical pore size and structure. According to the BET analysis on ceramic membranes shows that the best ceramic membrane produced in this study is C ceramic membrane with a clay composition of 87.5%; 10% of rice husk; and 2.5% of iron powder with a pore size of 2.8 μm and a large surface area of ​​45.38 m2/g. The difference in pressure of 2 bars gives the best results in reducing levels of contaminant compounds contained in river water with a percentage of Fe reduction of 92.18%, Mn of 89.23%,  and Zn of 99.80%.


2017 ◽  
Vol 61 (3) ◽  
pp. 206 ◽  
Author(s):  
Sonia Bouzid Rekik ◽  
Jamel Bouaziz ◽  
Andre Deratani ◽  
Semia Beklouti

The focus of this work is to assess the quality of porous membranes prepared from naturally occurring kaolin clays and to evaluate the performance of tubular ceramic membranes treating integrated raw effluents from seafood industry. This material has been chosen due to its natural abundance, its non-toxicity, low cost and its valuable properties. The preparation and characterization of porous tubular ceramic membranes, using kaolin powder with and without corn starch as poreforming agent, were reported. SEM photographs indicated that the membrane surface was homogeneous. The effects of material compositions, additives and the relatively lower sintering temperature, ranging from 1100° to 1250°C, on porosity, average pore size, pore-size distribution and mechanical strength of membranes have been investigated. A correlation between microstructure and mechanical properties of membranes has been discussed. The performance of the novel ceramic membranes thus obtained was determined by evaluating both the water permeability and rejection. The obtained membrane was used to treat cuttlefish effluents generated from the conditioning seawater product industry which consumes a great amount of water. Cross-flow microfiltration was performed then, in order to reduce the turbidity and chemical oxygen demand (COD). 


2014 ◽  
Vol 798-799 ◽  
pp. 537-541 ◽  
Author(s):  
Rosa Carmo Oliveira Lima ◽  
H.L. Lira ◽  
G.A. Neves ◽  
M.C. Silva ◽  
K.B. França

The production of fabrics is one important sectors of the national economy, especially in jeans production. During dyeing step, in the production of jeans, it is generate a large amount of wastewater rich in indigo, a strong blue dye that when released directly into the environment is responsible for several environmental impacts. The aim of this work is to study the use of microfiltration ceramic membranes for indigo separation in effluents from textile industry. Initially the ceramic membranes were characterized in relation to the pore size and tangential flux. It was produced an indigo solution whose concentration and composition similar to the effluent of textile industry. The solution was characterized and submitted to a filtration through ceramic membranes by tangential flow, by applying a pressure of 3 Bar. At the end it was verified that 99% of the indigo was retained.


2015 ◽  
Vol 18 (3) ◽  
pp. 220-230 ◽  
Author(s):  
Cristina VERGARA ◽  
Beatriz CANCINO-MADARIAGA ◽  
Andrés RAMÍREZ-SALVO ◽  
Carmen SÁENZ ◽  
Paz ROBERT ◽  
...  

Summary Betalains are fruit pigments possessing health-giving properties. To isolate the pigments, the juice must be separated from the fruit matrix, which contains biopolymers. The aim of this study was to clarify cactus pear juice by microfiltration to obtain a clarified juice containing betalains. For this purpose, two 0.2 µm pore size microfiltration membranes (ceramic and polymeric) were tested. The permeates were clear, free of turbidity and high in betalains (20%), also containing polyphenols and antioxidant activity, whereas the retained fractions were high in mucilage. The best separation was obtained using the ceramic membrane.


2013 ◽  
Vol 8 (1) ◽  
pp. 23-30

Asymmetric multilayer Al2O3 ceramic membranes with pore sizes ranging from 3 to 500 nm are synthesized in tubular form with external diameter of 14mm, internal diameter of 8mm and length of 340mm. The membrane synthesis took place on commercially available supports, with the dip-coating technique either from aloumina particle suspensions or from boehmite sols. The membranes are subsequently mounted in a pilot-scale module able to accept six specimens, and used in micro- and ultra- filtration experiments for the purification of aqueous streams from suspended solids. The experimental module is equipped with a back-flushing circuit that can be activated on demand to prevent the fouling of the membranes and the associated reduction in permeability. For the microfiltration experiments membranes with 100nm pore size are used. In the case of an aqueous solid suspension with a concentration of 0.1 to 1 wt.% consisting of solid particles with an average size of 0.5 μm, complete solid rejection is observed. The process has a capability of treating 0.8 m3 of feed per hour per square meter of membrane surface under an average pressure difference of 3 x 105 Nt m-2. The fouling of the membranes can be quite effectively reduced by back flushing at regular time intervals. Under complete retentate recycling conditions, more than 95% of the feed volume can be recovered as microparticle free water. For the ultrafiltration experiments membranes with 3 nm pore sizes are used. In the case of an aqueous solid suspension of nanoparticles with a concentration of 0.1 to 1 wt.% consisting of solid particles with sizes of 20-30 nm the rejection was also almost complete. The process has in this case a capability of treating 0.16 m3 of feed per hour per square meter of membrane surface under an average pressure difference of 3 x 105 Nt m-2. Fouling appears not to cause serious permeability drop in this case probably because even after the nanoparticle deposition the membrane hydraulic resistance is the permeability determining step. Almost the entire feed volume can be recovered as nanoparticle free water under complete retentate recycling conditions. Purification experiments are also performed in olive oil mill wastewater. Best results are achieved by using a two step membrane process with gradually decreasing pore size. Although complete rejection of solids and significant reduction of the BOD5 and phenol content of the wastes is achieved, the very low permeability is the main draw back of the process.


2010 ◽  
Vol 10 (6) ◽  
pp. 987-994 ◽  
Author(s):  
Uwe Mueller ◽  
Gerhard Biwer ◽  
Guenther Baldauf

Ceramic membranes, different in pore size and membrane material, were applied to remove particulate and dissolved matter from different spent filter backwash water types as well as from dam water. The study was conducted in pilot scale under conditions typical for waterworks at a dam water treatment plant. A comparison of different ceramic membranes implied that total membrane resistance was more influenced by feed water type and by operation than by membrane type for the waters tested. Nevertheless, ceramic membranes seem to accumulate during operation less organic foulants especially polysaccharides compared to organic membranes leading to lower total membrane resistances for ceramic membranes during filtration process. Ceramic membranes may be considered to be applicable to treat spent filter backwash water as well as source water in public water supply.


Sign in / Sign up

Export Citation Format

Share Document