Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor

2013 ◽  
Vol 69 (6) ◽  
pp. 1145-1150 ◽  
Author(s):  
R. H. Yoo ◽  
J. H. Kim ◽  
P. L. McCarty ◽  
J. H. Bae

A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01–0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m2/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.

2013 ◽  
Vol 68 (2) ◽  
pp. 394-399 ◽  
Author(s):  
J. Bae ◽  
R. Yoo ◽  
E. Lee ◽  
P. L. McCarty

A two-stage anaerobic fluidized-bed membrane bioreactor (SAF-MBR) system was applied for the treatment of primary-settled domestic wastewater that was further pre-treated by either 10 μm filtration or 1 mm screening. While the different pre-treatment options resulted in different influent qualities, the effluent qualities were quite similar. In both cases at a total hydraulic retention time of 2.3 h and 25 °C, chemical oxygen demand and biochemical oxygen demand (BOD5) removals were 84–91% and 92–94%, with effluent concentrations lower than 25 and 7 mg/L, respectively. With a membrane flux of 6–12 L/m2/h, trans-membrane pressure remained below 0.2 bar during 310 d of continuous operation without need for membrane chemical cleaning or backwashing. Biosolids production was estimated to be 0.028–0.049 g volatile suspended solids/g BOD5, which is far less than that with comparable aerobic processes. Electrical energy production from combined heat and power utilization of the total methane produced (gaseous and dissolved) was estimated to be more than sufficient for total system operation.


2014 ◽  
Vol 9 (2) ◽  
pp. 206-214 ◽  
Author(s):  
C. S. Tai ◽  
J. Snider-Nevin ◽  
J. Dragasevich ◽  
J. Kempson

Membrane bioreactor (MBR) package systems are providing affordable and simple-to-use decentralized wastewater treatment solutions for small to medium sized communities that face the challenge of balancing environmental and regulatory responsibilities with budgetary limitations. With a greater confidence and understanding of MBR technology, there is an increasing incentive in using MBR technology for these types of applications. Furthermore, valued qualities such as compact footprint, quick installation and start-up, process reliability, ease of operation, and superior effluent quality suitable for direct surface discharge and water reclamation have made MBR package system a preferred solution for decentralized wastewater treatment applications. This paper presents a retrofit solution for the Whitehouse Terrace Wastewater Treatment Plant. The existing extended aeration activated sludge package plant was retrofitted with a pre-engineered newterra MicroClearTM MBR package system for a small community along St Lawrence River in Brockville, Ontario. Five years full scale operation data of the MBR package system is presented and it is evident that the MBR package system consistently delivered high quality effluent that is far better than the required limit for direct surface water discharge to the St. Lawrence's river, with average effluent quality of 2.4, 2.6, 0.5, 0.05 mg/L, 1.7 counts/100 mL and 7.4 for biochemical oxygen demand, TSS, TP, TAN, Escherichia coli and pH, respectively.


2017 ◽  
Vol 28 (4) ◽  
pp. 477-489 ◽  
Author(s):  
Daiane Cristina de Oliveira Garcia ◽  
Liliane Lazzari Albertin ◽  
Tsunao Matsumoto

Purpose The purpose of this paper is to evaluate the efficiency of a duckweed pond in the polishing of a stabilization pond effluent, as well as quantify its biomass production. Once an adequate destination is given to the produced biomass, the wastewater treatment plant can work in a sustainable and integrated way. Design/methodology/approach The duckweed pond consisted of a tank with volume 0.44 m3, operating in continuous flow with an outflow of 0.12 m3/day and hydraulic retention time of 3.8 days. Effluent samples were collected before and after the treatment, with analyzes made: daily-pH, dissolved oxygen and temperature; twice a week – total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD); and weekly – total solids (TS) and Biochemical Oxygen Demand (BOD5). The duckweeds were collected each for seven days for its production quantification. Findings The highest efficiency of TN, TP, COD, BOD5 and TS removal were of 74.67, 66.18, 88.12, 91.14 and 48.9 percent, respectively. The highest biomass production rate was 10.33 g/m2/day in dry mass. Research limitations/implications There was great variation in biomass production, which may be related to the stabilization pond effluent conditions. The evaluation of the effluent composition, which will be treated with duckweeds, is recommended. Practical implications The evaluated treatment system obtained positive results for the reduction in the analyzed variables concentration, being an efficient technology and with operational simplicity for the domestic effluent polishing. Originality/value The motivation of this work was to bring a simple system of treatment and to give value to a domestic wastewater treatment system in a way that, at the same time the effluent polluter level is reduced and it is also possible to produce biomass during the treatment process.


2018 ◽  
Vol 2 (2) ◽  
pp. 17
Author(s):  
Guntar Marolop S ◽  
Hadrah Hadrah

The increasing of palm oil mills as a result of an increase in public interest of land exploitation to produce  palm oil can cause high environmental pollution if the waste oil generated were not managed properly. Palm Oil Mill Effluent (POME) is the wastewater generated by palm oil extraction process. On the other hand, POME is a renewable energy source. To address the need for electrical energy increases, the monitoring of POME is an effort that needs to be studied because POME is no longer a pollutant to the environment but a helpful resource.This study uses field data collection in the form of POME volume and treatment plant process management to determine the COD levels so that the estimation of total biogas can be done. Based on the calculation of the energy potential of POME in Jambi province with  processing capacity of the entire Province amounted to 1,230 tons FFB / hour, 20 hours operating time / day and COD content of 50,000 mg / L, the amount of energy can be obtained is 737.712 MWh / day or 269.26 GWh / Year.Keywords: POME, biogas, energy


2020 ◽  
Author(s):  
Shaik Nazia ◽  
Karishma Mishra ◽  
Veeriah Jegatheesan ◽  
Suresh K Bhargava ◽  
Sridhar Sundergopal

Abstract Significant demand for water supply was to expect forthcoming decades. Production of reusable water from industrial and domestic wastewater is a feasible, cost-effective, and significant positive benefit to the environment. In the present study, the domestic rice gruel wastewater (RGW) treated with aqueous methanol coagulation integrated aerobic membrane bioreactor (AMBR). Hydrophilized spiral wound 5 kDa ultrafiltration membrane (HF – UF) used in the bioreactor for the effective removal of pollutants from RGW. Furthermore, the RGW pretreated with various coagulants such as methanol, ethanol, and HCl. The obtained pretreated RGW subjected to the HF-UF 5 kDa side stream AMBR for reusable water production. The experiments conducted to determine the turbidity, conductivity, total dissolved solids (TDS), and chemical oxygen demand (COD) found to be 96 %, 91 %, 91 %, and 94.6 %. The overall process was feasible, compact, environmentally free, cost-effective, eco-friendly.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zarimah Mohd Hanafiah ◽  
Wan Hanna Melini Wan Mohtar ◽  
Hassimi Abu Hasan ◽  
Henriette Stokbro Jensen ◽  
Anita Klaus ◽  
...  

Abstract The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1812 ◽  
Author(s):  
Beraki Bahre Mehari ◽  
Sheng Chang ◽  
Youngseck Hong ◽  
Han Chen

Thermal hydrolysis (TH) and biological hydrolysis (BH) are two main and growing anaerobic digestion pretreatment technologies. In this study, municipal wastewater sludge samples were collected from the Guelph Wastewater Treatment Plant (WWTP) in Ontario, Canada. The effects of temperature on BH treatment, including BH at 42 °C (BH42), 42 °C followed by 55 °C (BH42+55), 55 °C followed by 42 °C (BH55+42), and 55 °C (BH55) were evaluated for anaerobic digestion performance enhancement and compared with TH treatment at 165 °C. The TH, BH42, BH42+55, BH55+42, and BH55 treatments caused the reduction of volatile suspended solids (VSS) by 22.6%, 17.5%, 24.6%, 23.1%, and 25.9%, respectively. The soluble chemical oxygen demand (sCOD) content of the sludge increased by 377.5%, 323.8%, 301.3%, 286.9%, and 221.7% by the TH, BH55, BH42+55, BH55+42, and BH42 treatments, respectively. Volatile fatty acids (VFA) constituted around 40% of the sCOD in the BH-treated sludge and 6% in the TH-treated sludge. The cumulative methane yields (NmLCH4/g COD fed) of sludge treated by BH55+42 and TH were respectively 23% and 20% higher than that of the untreated sludge. For BH pretreatment, sludge treated by BH55+42 produced more methane than those treated by BH42+55, BH55, and BH42. The methane yields of the combined sludge treated by the TH and BH55+42 treatments were in the ranges of 248.9 NmLCH4/g COD to 266.1 NmLCH4/g COD fed, and 255.3 NmLCH4/g COD to 282.2 NmLCH4/g COD fed, respectively.


2020 ◽  
Vol 81 (4) ◽  
pp. 656-667 ◽  
Author(s):  
Serdar Koyuncu ◽  
Sema Arıman

Abstract In this study, domestic wastewaters originating from a settlement with a population of 17,500 were treated by electrocoagulation process in a real-scale EC plant and the economic applicability of the process was investigated. The removal efficiencies of control parameters in the influent and effluent of the real-scale treatment plant such as suspended solids (SS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and changes of pH and conductivity parameters were monitored for 12 months. The obtained data were evaluated according to European Urban Wastewater Treatment Directive, Turkish Water Pollution Control Regulation and Turkish Urban Wastewater Treatment Regulation. According to the results obtained, the removal efficiencies of the pollutant parameters were achieved in the range of 72–83% for SS, 67–80% for COD, 69–81% for BOD, 21–47% for TN and 27–46% for TP. Considering the Turkish wastewater discharge regulations, it can be concluded that the discharge standards for SS, COD and BOD parameters were achieved while they were not achieved in certain periods for TN and TP. In addition, the energy consumption and the operating cost of this real-scale plant were determined to be 0.49–0.54 kWh/m3 and 0.24–0.28 EUR/m3, respectively.


Author(s):  
Mila Dirgawati ◽  
Mohamad Rangga Sururi ◽  
Wili Wiliana ◽  
Nining Widiawati

Domestic wastewater treatment plant performance (WWTP) currently refers to stringent wastewater quality standards (Minister of Environment and Forestry Regulation No. 68 of 2016) considering potential environmental degradation because of pollutants in the wastewater. This study evaluated the performance of the Regional Domestic WWTP in Cimahi City. Cimahi has 10 WWTPs which were operated by an Anaerobic Baffled Reactor system. Periodic monitoring only measured the wastewater characteristics after treatment with parameters: total suspended solids (TSS), ammonia, chemical oxygen demand(COD), biological oxygen demand(BOD), and oil and grease. Therefore, wastewater characteristics were measured before and after treatment at selected WWTP during peak and non-peak hours, with TSS, ammonia, and COD. Important hydraulic factors were also measured: flow velocity at peak and non-peak hours, hydraulic detention time, and sludge height. Effluent from all WWTPs did not meet the standard. However, WWTPs with detention time >2 days produced parameter concentrations closed to the maximum value. The selected WWTP has a 5.7days detention time with removal efficiency for COD 57.52%, and TSS 42.56%, during peak period and COD 60.19% and TSS 34.84% for a non-peak period, but ammonia concentration did not decrease. Overall, WWTP has not been able to meet quality standards and the quality.


Sign in / Sign up

Export Citation Format

Share Document