Submerged macrophyte Ceratophyllum demersum affects phosphorus exchange at the sediment–water interface

2015 ◽  
Vol 71 (6) ◽  
pp. 913-921 ◽  
Author(s):  
Yanran Dai ◽  
Shuiping Cheng ◽  
Wei Liang ◽  
Zhenbin Wu

Substantial research efforts were made to assess the effects of submerged macrophytes on water quality improvement, but information on the mechanism of submerged macrophytes relative to the exchange of phosphorus (P) at the sediment–water interface is very limited. To help fill the void, a popular species, Ceratophyllum demersum L. was chosen to address the effects and mechanisms of submerged macrophyte growth on the processes of P exchange across the sediment­–water interface. In treatment mesocosms (planted), equilibrium phosphorus concentration (EPC0) value falls from 68.4 to 36.0 µg/L, with a mean value of 52.5 µg/L. Conversely, the distribution coefficient (Kd) value has a predominantly increasing trend. But they are both significantly higher than an unplanted control (p < 0.05). Also, in the planted mesocosm, maximum phosphate sorption capacity (Qmax) was significantly reduced (4,721–3,845 mg/kg), and most of the linear correlations between different forms of phosphorus and sediment P adsorption parameters were affected (p < 0.05). The EPC0 Percentage Saturation percentages (EPCsat) in planted groups were 325% higher than that in control (p < 0.05). We conclude that C. demersum could promote the release of P from sediments, and soluble reactive phosphorus concentration in overlying water is probably the driving force for P exchange at the sediment–water interface.

2013 ◽  
Vol 807-809 ◽  
pp. 219-222
Author(s):  
Xiao Li Wang ◽  
Hui Juan Wang

The Equilibrium Phosphorus Concentration (EPC0) of Hohhot dust (HD) of Inner mongolia was measured to examine whether the HD acted as sources or sinks of soluble reactive phosphorus (SRP) to the Yellow River water column. The modified Langmuir isotherm equation was modified to describe phosphorus (P) adsorption on the HD in Yellow River water. The EPC0 was higher than P concentration in the overlying water, which indicates that the HD acted as sources of phosphate. In addition, solid concentration (Cs) effect existed obviously in P adsorption experiment and the hysteresis got bigger as Cs increased.


Author(s):  
Jong-Yun Choi ◽  
Seong-Ki Kim ◽  
Kwang-Seuk Jeong ◽  
Gea-Jae Joo

AbstractMacrophytes determine the physical complexity of aquatic environments and provide a suitable habitat for colonization by microcrustaceans. We evaluated the effects of a seasonal growth pattern and structure of macrophyte species on epiphytic microcrustaceans collected from macrophyte surfaces (stems and leaves) in shallow wetlands from May 2011 to October 2012. In 2011, epiphytic microcrustaceans that preferred free-floating macrophytes (Spirodela polyrhiza and Salvinia natans) and submerged macrophytes (Potamogeton crispus and Ceratophyllum demersum) were affected by the seasonal growth of these species. Epiphytic microcrustaceans were abundant on the surface of Spirodela polyrhiza in June and August and on Salvinia natans in September and October. In 2012, epiphytic microcrustaceans preferred submerged macrophyte species over the free-floating ones. The results of stable isotope analysis showed that epiphytic microcrustaceans depend on epiphytic particulate organic matter (EPOM) from each macrophyte species rather than on suspended particulate organic matter. Small species (Coronatella rectangula, Pleuroxus laevis, and Chydorus sphaericus) used EPOM (dominated by epiphytic algae) on free-floating and submerged macrophyte species; however, relatively larger species (Ilyocryptus spinifer and Macrothrix rosea) used EPOM only from submerged macrophytes. Based on these findings, we conclude that the distribution of epiphytic microcrustaceans is determined by seasonal characteristics, morphology of macrophyte species, and abundance of food resources.


2021 ◽  
Vol 43 ◽  
pp. e57734
Author(s):  
Rafael Henrique de Moura-Falcão ◽  
Ariadne do Nascimento Moura ◽  
Cihelio Alves Amorim

Cyanobacterial blooms can cause severe ecological and health problems in drinking water reservoirs. To alleviate this problem, allelopathically active submerged macrophytes can be used to reduce cyanobacterial growth. Accordingly, this study aimed to evaluate the sensitivity of strains of the Microcystis aeruginosa complex isolated from reservoirs with the presence and absence of submerged macrophytes to the allelochemicals of Ceratophyllum demersum. A coexistence experiment was carried out between the submerged macrophyte C. demersum and four Microcystis strains, with two treatments for each strain, one in coexistence with the submerged macrophyte (7 g L-1) and control (in the absence of the macrophyte). Two strains of M. aeruginosa (BMIUFRPE-06 and BMIUFRPE-07) and two of M. panniformis (BMIUFRPE-08 and BMIUFRPE-09) were used, which were isolated from Cajueiro (with submerged macrophytes) and Tapacurá (without submerged macrophytes) reservoirs, respectively. The biomass of Microcystis strains from the reservoir without macrophytes (BMIUFRPE-08 and BMIUFRPE-09) was significantly inhibited in 96% (T-test: p < 0.01) and 74% (T-test: p< 0.05), when compared to the control, respectively, with lower values of growth rates (ANOVA: p < 0.05). The strains isolated from the reservoir with macrophytes (BMIUFRPE-06 and BMIUFRPE-07) showed a growth delay (biomass reductions of 44 and 58%, respectively) in the coexistence treatment but without significant difference from the control on the sixth day of the experiment (biomass - T-test: p > 0.05; growth rate - ANOVA: p > 0.05). These results suggest that strains isolated from environments with submerged macrophytes are less sensitive to allelochemicals of these plants, as these strains may be adapted to the coexistence with submerged macrophytes.


1988 ◽  
Vol 45 (11) ◽  
pp. 2026-2034 ◽  
Author(s):  
R. L. Klotz

Stream sediments were found to regulate the soluble reactive phosphorus (SRP) of stream water by geochemical processes. This conclusion was based on sediment analysis, laboratory sorption experiments, and measurement of the equilibrium phosphorus concentration (EPC). EPC is the concentration of P in the water at which there is neither sorption nor desorption of P by the sediments. At low flow conditions, streamwater SRP was highly correlated with EPC at six sites along Hoxie Gorge Creek (r = 0.979). EPC was inversely related to the ionic strength of the equilibrating solution, with Ca2+ producing larger changes than Na+. Minimum EPC values occurred near the neutral pH of the stream water and increased sharply in acidic and basic solutions. Also, EPC was negatively correlated with the exchangeable Al content of the sediments at the six sites. These data are consistent with a mechanism previously verified for soils in which solution cations displace exchangeable Al(III) from sediments; hydrolyzed Al(III) reacts with phosphate and removes it from solution. EPC and streamwater SRP were lower at sites with sediments that had higher concentrations of P-binding sites, despite also having higher sediment P.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2075 ◽  
Author(s):  
O’Leary ◽  
Johnston ◽  
Gardner ◽  
Penningroth ◽  
Bouldin

This study focuses on soluble reactive phosphorus (SRP), a key driver of eutrophication worldwide and a potential contributor to the emerging global environmental problem of harmful algal blooms (HABs). Two studies of tributary SRP concentrations were undertaken in sub-watersheds of Cayuga Lake, NY, the subject of a total maximum daily load (TMDL) development process, due to phosphorus impairment of its southern shelf. The long-term study compared SRP concentration in Fall Creek in the 1970s with that in the first decade of the 2000s, thus spanning a period of change in phosphorus sources, as well as in regional climate. The spatial study used data collected between 2009 and 2018 and compared SRP concentrations in Fall Creek to levels in northeastern tributaries that flow into the lake close to areas where HABs have been problematic. SRP was measured using standard procedures. Flow-weighted mean SRP concentration ranged between 15.0 µg/L and 30.0 µg/L in all years studied in both the 1970s and 2000s, with the exception of 2010. Annual discharge in Fall Creek showed no trend between 1970 and 2018, but a higher proportion of high streamflow samples was captured in the 2000s compared to the 1970s, which resulted in proportionally increased SRP concentration in the latter time period. There was no significant difference in the SRP concentration—flow rate relationship between the two time periods. Adjusted for flow rate, SRP concentrations in Fall Creek have not changed over many decades. Increasing phosphorus contributions from growing population and urbanization since the 1970s may have been counterbalanced by improvements in wastewater treatment and agricultural practices. Mean SRP concentration in northeastern tributaries was significantly (p < 0.001) higher than in Fall Creek, likely reflecting more intense agricultural use and higher septic system density in the watersheds of the former. This finding justifies continued monitoring of minor northern tributaries. Future monitoring must emphasize the capture of high flow conditions. Historical stability and highly variable hydrology will slow the watershed response to management and confound the ability to detect changes attributable to decreased phosphorus inputs. Large scale monitoring on decadal timescales will be necessary to facilitate watershed management.


1998 ◽  
Vol 37 (6-7) ◽  
pp. 323-329 ◽  
Author(s):  
José M. Azcue ◽  
Alex J. Zeman ◽  
Alena Mudroch ◽  
Fernando Rosa ◽  
Tim Patterson

In this manuscript, we present data from a demonstration in situ capping site (100 m × 100 m) in Hamilton Harbour, Lake Ontario, Canada. A layer of clean medium to coarse sand with the average thickness of 35 cm was placed at the site in the summer of 1995. Concentration of Zn, Cr, and Cd in the original sediments reached values over 6000, 300 and 15 μg/g, respectively. The predicted consolidation of the uppermost one meter of sediment was about 14 cm, which was in good agreement with values obtained from comparisons of moisture content values of pre-capping and post-capping cores. A thin layer of fresh moderately contaminated sediments has started to develop on the top of the cap. In general, the concentrations of elements were greater in porewater than in the overlying water, e.g., the concentration of Fe and soluble reactive phosphorus were 1000 times, and those of Mn 100 times greater. There was a significant reduction in the vertical fluxes of all the trace elements after the capping of the contaminated sediments.


2008 ◽  
Vol 350 (3-4) ◽  
pp. 261-273 ◽  
Author(s):  
Helen P. Jarvie ◽  
Robert J.G. Mortimer ◽  
Elizabeth J. Palmer-Felgate ◽  
Katherine St. Quinton ◽  
Sarah A. Harman ◽  
...  

Author(s):  
Bradley J. Austin ◽  
Violet Eagle ◽  
Michelle A. Evans-White ◽  
J. Thad Scott ◽  
Brian E. Haggard

Nuisance periphyton growth influences the aesthetics, recreation, and aquatic life of waterbodies. Partners Lake is a shallow spring-fed lake in the headwaters of the Illinois River Watershed in Cave Springs, Arkansas, that experiences nuisance growth of periphyton (i.e., Spirogyra spp.) each year. The ratio of dissolved nitrogen (N ~5.0 mg L-1) and phosphorus (P ~0.030 mg L-1) in the lake water (N:P≥288), as well as nutrient limitation assays, suggests that periphyton growth should be P-limited. While the water column lacks sufficient P to promote growth, the sediments have the ability to release P to the overlying water; P-flux ranged from 1.63 mg m-2 d-1 to over 10 mg m-2 d-1, reaching final concentrations of 0.08 to 0.34 mg L-1. However, soluble reactive phosphorus concentrations were consistently at or below 0.030 mg L-1, in the lake, suggesting that the periphyton were likely immobilizing P as quickly as it was released from the sediments. In the lab, maximal periphyton growth (~30 to 35 mg m-2) occurred in the 0.10 to 0.25 mg L-1 P treatments, over a 6 day incubation period. Similar levels of growth occurred when lake sediments were the P source, suggesting P released from the sediments is sufficient to support nuisance algal growth. We need to begin managing the legacy P stored in the sediments, in addition to external P loads, because internal P can sustain nuisance periphyton biomass when N is not limiting.


2017 ◽  
Vol 14 (1) ◽  
pp. 48 ◽  
Author(s):  
Tao Liang ◽  
Yali Tong ◽  
Xiahui Wang ◽  
Lingqing Wang

Environmental contextEutrophication caused by excessive inputs of phosphorus is a prevalent global environmental problem. Reactive phosphorus released from sediments was measured by two new in situ passive sampling techniques capable of high-resolution measurements of phosphorus concentration. The methods provide the scientific evidence for solving the problems associated with deteriorating surface water quality. AbstractInternal phosphorus (P) loading is regarded as a major eutrophication factor and may prevent improvements in lake water quality. Two new in situ passive sampling techniques, high-resolution pore-water equilibrators (HR-Peeper) and zirconium oxide-based diffusive gradients in thin films (Zr-oxide DGT), were combined to measure dissolved reactive phosphorus (DRP) (CPeeper) and labile phosphorus (CDGT) at five sites in South Dongting and West Dongting Lakes. The vertical distribution of CPeeper and CDGT displayed similarity, which demonstrated that the buffering capacity of the labile P in sediments was similar at different depths. The diffusion flux of P from the sediments at the sediment–water interface ranged from 1.9 to 88ng m–2 day–1, with an average value of 38ng m–2 day–1. The P flux at the entrances to the Yuan, Li and Zi Rivers was fairly large at all five sites. The sediments at the five sites released P into overlying water, indicating that the sediments are an important source of P for Dongting Lake.


2015 ◽  
Vol 22 (24) ◽  
pp. 19507-19517 ◽  
Author(s):  
Jinzhi Wang ◽  
Xia Jiang ◽  
Binghui Zheng ◽  
Yuan Niu ◽  
Kun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document