Removal of copper ions from aqueous solution by the sodium salt of the maleic acid-allylpropionate-styrene terpolymer

2016 ◽  
Vol 74 (6) ◽  
pp. 1484-1491
Author(s):  
Elchin Akperov ◽  
Oktay Akperov ◽  
Elnara Jafarova ◽  
Sabahiye Gafarova

The sodium salt of the maleic acid-allylpropionate-styrene terpolymer was used for recovery of copper ions from aqueous solution. Effects of contact time, sorbent weight and initial Cu2+ ion concentrations on removal efficiency were tested. The maximum experimental sorption capacity of the sorbent for copper ions is 0.71 g g−1. The sorption isotherm of copper ions onto a prepared polymer sorbent has been studied and the equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The adsorption isotherm data showed that copper ions adsorption on the sorbent was better fitted to the Langmuir isotherm model. The Lagergren pseudo-first- and pseudo-second-order kinetic models were applied to examine the kinetics of the copper ions sorption by the synthesized sorbent. The kinetic data are best described by the pseudo-second-order model. The calculated value of the maximum sorption capacity by the pseudo-second-order equation (0.62 g g−1) corresponds well with its experimentally found value (0.71 g g−1). Considering the obtained kinetic data, and the Fourier transform infrared spectroscopy (FT-IR) and UV-vis spectra of the sorbent after the sorption, it is possible to come to the conclusion that during the sorption process Cu2+ ions enter a complex with the carboxylic groups of the maleic acid units of the sorbent.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ying-Xia Ma ◽  
Yong-Xin Ruan ◽  
Dan Xing ◽  
Xue-Yan Du ◽  
Pei-Qing La

Ethylenediamine functionalized magnetic expanded graphite decorated with Fe3O4 nanoparticles (MEG-NH2) was fabricated by one-pot solvothermal method. The as-prepared MEG-NH2 nanohybrids were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and Zeta potential analyzer. The effects of Fe3O4 content in MEG-NH2 nanohybrids, pH, initial concentration, contact time, and dosage on adsorption properties of the MEG-NH2 nanohybrids for Ag(I) from aqueous solution were investigated by batch experiments. The pseudo-first-order and the pseudo-second-order kinetic models were utilized to study adsorption kinetics. The experimental data was also analyzed with Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models. The results show that Ag(I) was reduced to silver in the process of the adsorption by MEG-NH2 nanohybrids; the experimental data was better fitted to pseudo-second-order model and Langmuir isotherm model which revealed that the adsorption process was a chemical adsorption by the formation of silver on the surface of MEG-NH2 nanohybrids.


2016 ◽  
Vol 4 (12) ◽  
pp. 226-241
Author(s):  
K Veeravelan ◽  
S Arivoli ◽  
V Marimuthu

In the present study, adsorption of copper (II) ions from aqueous solution by Activated Zizyphus Jujuba shell Nano Carbon was investigated under batch mode. The influence of solution pH, sorbent dose, copper concentration, contact time and temperature was studied. The copper adsorption was favored with maximum adsorption at pH 6.5. Sorption equilibrium time was observed in 60 min. The equilibrium adsorption data were correlated with Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Hurkins-Jura, Halsay, Radlich-Peterson, Jovanovic and BET isotherm models. The kinetics of the adsorption process was tested by pseudo-first-order, pseudo-second order, Elovich and Intra-particle diffusion models. It was shown that adsorption of copper could be described by the pseudo-second order kinetic model. Thermodynamic parameters such as Gibbs free energy (ΔG0), the enthalpy (ΔH0) and the entropy change of sorption (ΔS0) have also been evaluated and it has been found that the adsorption process was spontaneous, feasible and endothermic in nature. The results indicated that Activated Zizyphus Jujuba shell Nano Carbon can be used as an effective and low-cost adsorbent to remove copper (II) from aqueous solution.


2017 ◽  
Vol 19 (4) ◽  
pp. 65-74 ◽  
Author(s):  
Wojciech Konicki ◽  
Daniel Siber ◽  
Urszula Narkiewicz

Abstract Magnetic ZnFe2O4 nanocomposite (ZnFe-NC) was used as an adsorbent for the removal of Rhodamine B (RB) from aqueous solution. The synthesized nanocomposite was characterized by XRD, SEM, HRTEM, BET and FTIR. The effects of various parameters such as initial RB concentration (5–25 mg L−1), pH (3.4–11.1) and temperature (20–60°C) were investigated. The adsorption capacity at equilibrium increased from 5.02 to 9.83 mg g−1, with the increase in the initial concentration of RB from 5 to 25 mg L−1 at pH 7.0 and at 20°C. The experimental results indicated that the maximum RB removal could be attained at a solution pH of 4.4 and the adsorption capacity obtained was 6.02 mg g−1. Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order model and the intraparticle diffusion model. The adsorption kinetics well fitted using a pseudo-second-order kinetic model. The experimental isotherm data were analyzed using two isotherm models, namely, Langmuir and Freundlich. The results revealed that the adsorption behavior of the RB onto ZnFe-NC fitted well with the Langmuir isotherm model. In addition, various thermodynamic parameters, such as standard Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) have been calculated.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ferda Gönen ◽  
Gökhan Tekinerdoğan

In this investigation, the color removal from synthetic wastewaters containing Acid Blue 29 (AB 29) dye was investigated by ZnF-based nanomaterials (ZnFe2O4) synthesized by the coprecipitation method in a batch system. SEM, FT–IR, and XRD analysis were used for the characterization of the nanoparticles (before and after adsorption), and the analysis results were compared with each other. The parameters such as pH, temperature, dye concentration, and nanoparticle dosage affecting color removal were examined systematically, and favorable color removal conditions were determined by the classical approach. From the experimental results, the favorable conditions with high removal efficiency for the adsorption were determined: removal temperature 35°C and the removal pH 2.0. At these experimental conditions, the adsorbed dye amount per unit mass of adsorbent and the percentage dye removal were determined as 1489.79 mg·g−1 and 98.83%, respectively. In the other part of the research, three different isotherm models (Langmuir, Freundlich, and Temkin) were used to examine the adsorption equilibrium data. Langmuir and especially Freundlich linear isotherm models provided the highest R2 regression coefficients, successfully. The kinetic data was evaluated by pseudo-first-order and pseudo-second-order kinetic model approach. It was observed that pseudo-second-order kinetic model best represented AB 29-ZnF adsorption kinetic data. The determined thermodynamic parameters such as ΔH, ΔS, and ΔG were proved that the AB 29-ZnF adsorption system was an exothermic (ΔH < 0), spontaneous, thermodynamically favorable (ΔG < 0), and stabilized system without any structural changes in sorbate and sorbents (ΔS<0).


2021 ◽  
Vol 39 (4) ◽  
pp. 1076-1084
Author(s):  
O. Oribayo ◽  
O.O. Olaleye ◽  
A.S. Akinyanju ◽  
K.O. Omoloja ◽  
S.O. Williams

The need to develop more efficient adsorbent, comparable to commercially available adsorbent, is attracting significant interest as promising adsorbent for waste water treatment. In this study, the potential of activated carbon prepared from waste coconut shell (CSAC) for the removal of methylene blue (Mb) from aqueous solution was reported. Batch experiments were conducted to determine the adsorption isotherm and kinetics of Mb on CSAC. Langmuir, Freundlich and Temkin isotherm models were employed to fit and analyze the adsorption equilibrium data. The result shows Langmuir isotherm model gave the best fit and an adsorption capacity of 320.5 mg/g was obtained for Mb at pH value of 7, 0.02 g adsorbent dosage and contact time of 4.5 hour. The experimental kinetic data at different initial Mb concentrations was also analyzed with pseudo-first order, pseudo-second order and intraparticle diffusion models. The obtained results showed that the pseudo-second order model fits the adsorption kinetic data with R2 range of0.9985-0.9996. Finally, the thermodynamic parameters show that the adsorption of Mb on CSAC was spontaneous and endothermic in nature. This therefore suggests that (CSAC) is a viable adsorbent for effective removal of dye from wastewater effluent. Keywords: Activated carbon, Adsorption isotherms, Coconut shells, Methylene blue, kinetics.


2012 ◽  
Vol 18 (4-1) ◽  
pp. 563-576 ◽  
Author(s):  
Dragana-Linda Mitic-Stojanovic ◽  
Danijela Bojic ◽  
Jelena Mitrovic ◽  
Tatjana Andjelkovic ◽  
Miljana Radovic ◽  
...  

The sorption of lead, cadmium and zinc ions from aqueous solution by Lagenaria vulgaris shell biosorbent (LVB) in batch system was investigated. The effect of relevant parameters such as contact time, biosorbent dosage and initial metal ions concentration was evaluated. The Pb(II), Cd(II) and Zn(II) sorption equilibrium (when 98% of initial metal ions were sorbed) was attained within 15, 20 and 25 min, respectively. The pseudo first, pseudo-second order, Chrastil?s and intra-particle diffusion models were used to describe the kinetic data. The experimental data fitted the pseudo-second order kinetic model and intra-particle diffusion model. Removal efficiency of lead(II), cadmium(II) and zinc(II) ions rapidly increased with increasing biosorbent dose from 0.5 to 8.0 g dm-3. Optimal biosorbent dose was set to 4.0 g dm-3. An increase in the initial metal concentration increases the sorption capacity. The sorption data of investigated metal ions are fitted to Langmuir, Freundlich and Temkin isotherm models. Langmuir model best fitted the equilibrium data (r2 > 0.99). Maximal sorption capacities of LVB for Pb(II), Cd(II) and Zn(II) at 25.0?0.5?C were 0.130, 0.103 and 0.098 mM g-1, respectively. The desorption experiments showed that the LVB could be reused for six cycles with a minimum loss of the initial sorption capacity.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2019 ◽  
Vol 233 (9) ◽  
pp. 1275-1292 ◽  
Author(s):  
Atta ul Haq ◽  
Muhammad Rasul Jan ◽  
Jasmin Shah ◽  
Maria Sadia ◽  
Muhammad Saeed

Abstract The presence of heavy metals in water causes serious problems and their treatment before incorporating into the water body is a challenge for researchers. The present study was conducted to compare the sorption study of Ni (II) using silica gel, amberlite IR-120 and sawdust of mulberry wood in batch system under the influence of pH, initial Ni (II) concentration and contact time. It was observed that sorption process was depending upon pH and maximum sorption was achieved at pH 7.0. Kinetic data were well fitted into pseudo-second order kinetic model due to high R2 values and closeness of experimental sorption capacity and calculated sorption capacity of pseudo-second order. Isotherms study showed that Langmuir is one of the most suitable choices to explain sorption data due to high R2 values. The monolayer sorption capacities of silica gel, amberlite IR-120 and sawdust were found to be 33.33, 25.19, and 33.67 mg g−1, respectively. Desorption study revealed that NaCl is one of the most appropriate desorbent. It may be concluded from this study that sawdust is a suitable sorbent due to low cost, abundant availability and recycling of the materials for further study.


2012 ◽  
Vol 27 ◽  
pp. 11-18
Author(s):  
Timi Tarawou ◽  
Michael Horsfall

The adsorption of chromium (VI) ions from aqueous solution was studied using pure and carbonized fluted pumpkin waste biomass (FPWB). The kinetic data shows a pseudo-first-order mechanism with rate constants of 1.26 × 10-2 and 1.933 × 10-2 mg g-1 min-1 for the pure and carbonized FPWB, respectively. While the pseudo-second-order mechanism has rate constants of 0.93 × 10-1 and 1.33 × 10-1 mg g-1 min-1 for the pure and carbonized waste biomass respectively. The pseudo-second order kinetic model was found to be more suitable for describing the experimental data based on the correlation coefficient values (R2) of 0.9975 and 0.9994 obtained for pure waste biomass (PWB) and carbonized waste biomass (CWB), respectively. The results obtained from this study show that PWB and CWB have very high removal capacity for chromium (VI) from aqueous solution over a range of reaction conditions. Thus, fluted pumpkin waste biomass (Telfairia occidentalis Hook F) is a potential sorbent for the treatment of industrial effluents containing chromium (VI) contaminant.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6436 J. Nepal Chem. Soc., Vol. 27, 2011 11-18Uploaded date: 16 July, 2012


Clay Minerals ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 429-440 ◽  
Author(s):  
S. Gamoudi ◽  
N. Frini-Srasra ◽  
E. Srasra

AbstractThe use of organoclays as adsorbents in the remediation of polluted water has been the subject of many recent studies. In the present work, a Tunisian smectite modified with two cationic surfactants was used as an adsorbent to examine the adsorption kinetics, isotherms and thermodynamic parameters of fluoride ions from aqueous solution. Various pH values, initial concentrations and temperatures have been tested. Two simplified kinetic models, first-order and pseudo-second-order, were used to predict the adsorption rate constants. It was found that the adsorption kinetics of fluoride onto modified smectites at different operating conditions can best be described by the pseudo-second-order model. Adsorption isotherms and equilibrium adsorption capacities were determined by the fitting of the experimental data to well known isotherm models including those of Langmuir and Freundlich. The results showed that the Langmuir model appears to fit the adsorption better than the Freundlich adsorption model for the adsorption of fluoride ions onto modified smectites. The equilibrium constants were used to calculate thermodynamic parameters, such as the change of free energy, enthalpy and entropy. Results of this study demonstrated the effectiveness and feasibility of organoclays for the removal of fluoride ions from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document