scholarly journals Effective removal of lead (II) ions by dead calcareous skeletons: sorption performance and influencing factors

2016 ◽  
Vol 74 (7) ◽  
pp. 1577-1584 ◽  
Author(s):  
Ai Phing Lim ◽  
Zufarzaana Zulkeflee ◽  
Ahmad Zaharin Aris

Dead calcareous skeletons (CSs) as low-cost adsorbents were studied to remove lead ions (Pb (II)) in an aqueous solution. Factors influencing the efficiency of CSs were evaluated by adsorbent size, contact time, initial concentration, dosage concentration and pH. The optimum CS size for removal of Pb (II) was 710 μm at an equilibrium time of 720 min. The best dosage of CS was 10 g/L for a 99% removal efficiency without pH adjustment. Pb (II) ions were effectively removed in the initial pH of the metal solution. CS was able to remove a high concentration (100 mg/L) of Pb (II) at a removal efficiency of 99.92% and at an adsorption capacity of 13.06 mg/g. Our results demonstrated the potential of CS as a metal adsorbent in the aqueous phase with a high-removal efficiency and distinct physical characteristics.

Author(s):  
Hana Kobetičová ◽  
Marek Lipovský ◽  
Igor Wachter ◽  
Maroš Soldán

Abstract The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud) and a biosorbent (Lemna minor) were used for this research. Initial concentration of the contaminant was 4 mmol L−1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 %) was reached by the red mud in 48 hours.


2021 ◽  
Author(s):  
Rongjie Yi ◽  
Qi Zhang ◽  
Chengwu Yi

The degradation of oxacillin in aqueous solution by strong ionization dielectric barrier discharge (DBD) was explored. The effects of input voltage, initial pH, initial concentration of solution and hydroxyl (·OH) inhibitor on the removal efficiency of OXA were investigated. The results showed that the removal efficiency of OXA with initial concentration of 20mg/L reached 91.5% under the optimal treatment conditions of 3.8 kV and 7.3 pH. With the higher voltage and the lower initial concentration, the removal effect was better. The pH of the solution has little effect on the removal efficiency, and the removal effect is the best in neutral aqueous solution. The inhibition effect of TBA was stronger than that of CO32- and HCO3-. Moreover, ·OH was the main active substance in the process of strong ionization discharge, which played a major role in the removal of OXA. In addition, two main by-products were identified, the transformation pathways including hydroxylation (+16 Da), decarboxylation (-44 Da) were observed. This study provided a theoretical basis for the effective removal of antibiotics in water by strong ionization discharge.


2018 ◽  
Vol 54 (2A) ◽  
pp. 186
Author(s):  
Pham Thu Trang

In this study, the Pb(II) adsorption experiments with the single acid modified red mud were conducted as a function of initial pH, adsorbent doses, contact time, initial Pb(II) concentrations, and competitive ions. The adsorption results pointed that the highest Pb(II) removal efficiency was achieved at the initial pH 4.0, adsorbent dose 7.5 g/L, shaking speed 150 rpm and contact time around 60 minutes at the room temperature. The adsorption results arrowed that the Pb(II) removal efficiency of the modified red mud was enhanced to 150% compared to the raw red mud. The adsorption capacity of the modified red was measured of 9.52 mg/g, higher compared to several previous studies using the same method and type of acid. The study also indicated that the Pb(II) adsorption kinetic and isotherm were best described by the Pseudo - second - order kinetic and fitted to linearly transform both Langmuir and Freundlich with correlation coefficient (R2) over 0.99. The data obtained in this study indicated that modified red mud by using acid can be used as an effective and low cost adsorbent for heavy metals removal from wastewater.


2017 ◽  
Vol 76 (4) ◽  
pp. 776-784 ◽  
Author(s):  
Mijia Zhu ◽  
Jun Yao ◽  
Zhonghai Qin ◽  
Luning Lian ◽  
Chi Zhang

Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.


2021 ◽  
Vol 37 (1) ◽  
pp. 65-70
Author(s):  
Aram Dokht Khatibi ◽  
Kethineni Chandrika ◽  
Ferdos Kord Mostafapour ◽  
Ali Akbar Sajadi ◽  
Davoud Balarak

Conventional wastewater treatment is not able to effectively remove Aromatic hydrocarbons such as Naphthalene, so it is important to remove the remaining antibiotics from the environment. The aim of this study was to evaluate the efficiency of UV/ZnOphotocatalytic process in removing naphthalene antibiotics from aqueous solutions.This was an experimental-applied study that was performed in a batch system on a laboratory scale. The variables studied in this study include the initial pH of the solution, the dose of ZnO, reaction time and initial concentration of Naphthalene were examined. The amount of naphthalene in the samples was measured using GC.The results showed that by decreasing the pH and decreasing the initial concentration of naphthalene and increasing the contact time, the efficiency of the process was developed. However, an increase in the dose of nanoparticles to 0.8 g/L had enhance the efficiency of the process was enhanced, while increasing its amount to values higher than 0.8 g/L has been associated with a decrease in removal efficiency.The results of this study showed that the use of UV/ZnOphotocatalytic process can be addressed as a well-organized method to remove naphthalene from aqueous solutions.


Author(s):  
Negar Jafari ◽  
Afshin Ebrahimi ◽  
Karim Ebrahimpour ◽  
Ali Abdolahnejad

Introduction: Microcystin-leucine arginine (MC-LR) is a toxin with harmful effects on the liver, kidney, heart, and gastrointestinal tract. So, effective removal of MC-LR from water resources is of great importance. The aim of this study was to remove microcystin-LR (MC-LR) from aqueous solution by Titanium Dioxide (TiO2). Materials and Methods: In the present study, TiO2, as a semiconductor, was used for photodegradation of MC-LR under ultraviolet light (UV). The Response Surface Methodology was applied to investigate the effects of operating variables such as pH (A), contact time (B), and catalyst dose (B) on the removal of MC-LR. The MC-LR concentration was measured by high-performance liquid chromatography (HPLC). Results: The results showed that single variables such as A, B, and C had significant effects on MC-LR removal (pvalue < 0.05). In other words, increase of the contact time and catalyst dose had a positive effect on enhancing the removal efficiency of MC-LR, but the effect of pH was negative. The analysis of variance showed that BC, A2, and C2 variables had a significant effect on the MC-LR removal (pvalue < 0.05). Finally, the maximum removal efficiency of MC-LR was 95.1%, which occurred at pH = 5, contact time = 30 minutes, and catalyst dose = 1 g/l. Conclusion: According to the findings, TiO2, as a photocatalyst, had an appropriate effect on degradation of the MC-LR.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6477
Author(s):  
Yohanis Birhanu ◽  
Seyoum Leta

Lead pollution is a severe health concern for humankind. Utilizing water contaminated with lead can cause musculoskeletal, renal, neurological, and fertility impairments. Therefore, to remove lead ions, proficient, and cost-effective methods are imperative. In this study, the Odaracha soil which is traditionally used by the local community of the Saketa District was used as a novel low-cost technology to adsorb lead ions. Odaracha adsorbent was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption process followed the batch adsorption experiment. The response surface method was implemented to derive the operating variables’ binary interaction effect and optimize the process. According to the study’s experimental result, at optimum experimental conditions Odaracha adsorbent removes 98.17% of lead ions. Based on the result of the central composite design model, the Pb2+ ion removal efficiency of Odaracha was 97.193%, indicating an insignificant dissimilarity of the actual and predicted results. The coefficient of determination (R2) for Pb2+ was 0.9454. According to the factors’ influence indicated in the results of the central composite design model, all individual factors and the interaction effect between contact time and pH has a significant positive effect on lead adsorption. However, other interaction effects (contact time with dose and pH with dose) did not significantly influence the removal efficiency of lead ions. The adsorption kinetics were perfectly fitted with a pseudo-second-order model, and the adsorption isotherm was well fitted with the Freundlich isotherm model. In general, this study suggested that Odaracha adsorbent can be considered a potential adsorbent to remove Pb2+ ions and it is conceivable to raise its effectiveness by extracting its constituents at the industrial level.


2018 ◽  
Vol 53 ◽  
pp. 04004 ◽  
Author(s):  
Xiaofan Yang ◽  
Xueyu Wei ◽  
Xiaoping Xu ◽  
Zhigang Liu

Microcystin-LR (MC-LR) is one of the most notorious toxins liberated from cyanobacteria in drinking water sources. In this study, a skillful method access to new nanozero-valent iron @chitosan (nZVIMC) was synthesized by a facile one step method. The as-prepared nZVIMC was employed as an adsorbent for the effective removal MC-LR from aqueous solution. Transmission electron microscopy (TEM) demonstrates that nZVIMC is in quasi-spherical shape with size of around 50 nm, effect of variable parameters such as pH, contact time, initial concentration of MC-LR and adsorption properties of nZVIMC on MC-LR was further investigated. Scanning electron microscope (SEM) reveals that the particles are nearly spherical in shape with agglomeration. The results indicated that good adsorption performance was achieved at an initial pH of 5. The adsorption kinetics of nZVIMC was better fitted by pseudo-secondorder kinetics. The adsorption isotherm data was fitted well to Langmuir isotherm and then to Freundlich model, with an adsorption capacity of 68.9 mg/g at 300K. Thus, we believe that nZVIMC can be used as a low cost material for efficient removal of MC-LR from water.


REAKTOR ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 18-25
Author(s):  
Ariani Dwi Astuti ◽  
Dewi Intania Ayu

Tofu which is made by grinding soy bean, generates huge amount of wastewater and thus considered as one of the most polluted food-industrial effluent owing to its high values of organic contents. The small industries of tofu preparation process release the wastewater directly into the water body without being treated first. Prior to discharge this wastewater into the waterbody, the wastewater must be treated to reduce the possibility of negative impact and the contamination of the waterbody. For these small industries, the best alternative of wastewater treatment is one which has the following criteria: easy in operation, low cost operation, low volumes of sludge produced, and can be used in high concentration wastewater. In this research, bioreactor anaerobic-aerobic with media bioball is used. The highest removal efficiency of COD took place in anaerobic zones. Bioreactors were operated with the variations of retention time at 24 hours, 18 hours, and 12 hours. The COD removal efficiency for Hydraulic Retention Time (HRT) of 24 hours, 18 hours and 12 hours were found 90.3% (organic loading rate is 15.1 kg COD/m3.day), 84.4% and 76.3% respectively. The experiment showed that the longer of the hydraulic retention time (HRT), the higher the removal efficiency could be achieved. These occurred because a longer HRT will extend the contact time between wastewater and microorganisms attached. Therefore, microorganisms have a longer time to degrade organic matter in wastewater. Although the removal efficiency in these three-HRT was found high, the effluent of the reactor was still above the effluent standard based on regulation of Ministry of Environmental Permen LH No. 5/2014. Kinetics using Eckenfelder Equation results R2 equal to 0.9991, n equal to 0.293 and K equivalent to 7.3577 mg/L. Keywords: tofu wastewater, anaerobe, aerobe, bioball, wastewater, treatment, attached growth


2011 ◽  
Vol 347-353 ◽  
pp. 1930-1933 ◽  
Author(s):  
Usa Onthong ◽  
Pornpan Pungpo ◽  
Wikanda Thongnueakhaeng

The removal of the cadmium ion from aqueous solution was studied in batch experiments using five natural zeolites were obtained from South of Thailnd, Clinoptiolite, Mordenite, Willhensonite, Offretite and Ferrierite, on the basis of experimental models on laboratory scale. Clinoptiolite was used for preliminary study of the adsorption parameters. An hour contact time and 40 g/L of the ratio of zeolite per water sample are optimum adsorption parameters with an average cadmium removal efficiency of 91.68 %. The optimum adsorption conditions were then used for other four natural zeolites. The results show that the effective removal sequence can be listed as Offretite  Clinoptiolite > Willhensonite > Mordenite > Ferrierite. Clinoptiolite, Offretite and Willhensonite are successfully used to reduce significantly cadmium from sample water with removal efficiency ranging from of 87-92%, respectively. Accordingly, the natural zeolites are recommendable adsorbents for highly cadmium removal of industrial wastewater with low cost of wastewater treatments and environmentally friendly chemical processes.


Sign in / Sign up

Export Citation Format

Share Document