scholarly journals 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

Author(s):  
Hana Kobetičová ◽  
Marek Lipovský ◽  
Igor Wachter ◽  
Maroš Soldán

Abstract The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud) and a biosorbent (Lemna minor) were used for this research. Initial concentration of the contaminant was 4 mmol L−1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 %) was reached by the red mud in 48 hours.

2016 ◽  
Vol 74 (7) ◽  
pp. 1577-1584 ◽  
Author(s):  
Ai Phing Lim ◽  
Zufarzaana Zulkeflee ◽  
Ahmad Zaharin Aris

Dead calcareous skeletons (CSs) as low-cost adsorbents were studied to remove lead ions (Pb (II)) in an aqueous solution. Factors influencing the efficiency of CSs were evaluated by adsorbent size, contact time, initial concentration, dosage concentration and pH. The optimum CS size for removal of Pb (II) was 710 μm at an equilibrium time of 720 min. The best dosage of CS was 10 g/L for a 99% removal efficiency without pH adjustment. Pb (II) ions were effectively removed in the initial pH of the metal solution. CS was able to remove a high concentration (100 mg/L) of Pb (II) at a removal efficiency of 99.92% and at an adsorption capacity of 13.06 mg/g. Our results demonstrated the potential of CS as a metal adsorbent in the aqueous phase with a high-removal efficiency and distinct physical characteristics.


2018 ◽  
Vol 54 (2A) ◽  
pp. 186
Author(s):  
Pham Thu Trang

In this study, the Pb(II) adsorption experiments with the single acid modified red mud were conducted as a function of initial pH, adsorbent doses, contact time, initial Pb(II) concentrations, and competitive ions. The adsorption results pointed that the highest Pb(II) removal efficiency was achieved at the initial pH 4.0, adsorbent dose 7.5 g/L, shaking speed 150 rpm and contact time around 60 minutes at the room temperature. The adsorption results arrowed that the Pb(II) removal efficiency of the modified red mud was enhanced to 150% compared to the raw red mud. The adsorption capacity of the modified red was measured of 9.52 mg/g, higher compared to several previous studies using the same method and type of acid. The study also indicated that the Pb(II) adsorption kinetic and isotherm were best described by the Pseudo - second - order kinetic and fitted to linearly transform both Langmuir and Freundlich with correlation coefficient (R2) over 0.99. The data obtained in this study indicated that modified red mud by using acid can be used as an effective and low cost adsorbent for heavy metals removal from wastewater.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6477
Author(s):  
Yohanis Birhanu ◽  
Seyoum Leta

Lead pollution is a severe health concern for humankind. Utilizing water contaminated with lead can cause musculoskeletal, renal, neurological, and fertility impairments. Therefore, to remove lead ions, proficient, and cost-effective methods are imperative. In this study, the Odaracha soil which is traditionally used by the local community of the Saketa District was used as a novel low-cost technology to adsorb lead ions. Odaracha adsorbent was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption process followed the batch adsorption experiment. The response surface method was implemented to derive the operating variables’ binary interaction effect and optimize the process. According to the study’s experimental result, at optimum experimental conditions Odaracha adsorbent removes 98.17% of lead ions. Based on the result of the central composite design model, the Pb2+ ion removal efficiency of Odaracha was 97.193%, indicating an insignificant dissimilarity of the actual and predicted results. The coefficient of determination (R2) for Pb2+ was 0.9454. According to the factors’ influence indicated in the results of the central composite design model, all individual factors and the interaction effect between contact time and pH has a significant positive effect on lead adsorption. However, other interaction effects (contact time with dose and pH with dose) did not significantly influence the removal efficiency of lead ions. The adsorption kinetics were perfectly fitted with a pseudo-second-order model, and the adsorption isotherm was well fitted with the Freundlich isotherm model. In general, this study suggested that Odaracha adsorbent can be considered a potential adsorbent to remove Pb2+ ions and it is conceivable to raise its effectiveness by extracting its constituents at the industrial level.


2012 ◽  
Vol 724 ◽  
pp. 61-64
Author(s):  
Ying Li ◽  
Xiao Yan Lin ◽  
Zhe Chen ◽  
Xue Guang Luo ◽  
Wei Li Zuo

A composite membrane of thermoplastic carboxymethyl cellulose (TCMC) /PLA was prepared by electrospinning process, and crossliked by epichlorohydrin solution at different temperature. The cross-linking temperature was optimized by characterizing the morphology and tensile strength of the film. The optimal cross-linking temperature was 50°C. A composite membrane was used to remove Cu2+ from aqueous solutions, and the effects of initial concentration of Cu2+ and contact time on the removal efficiency of Cu2+ were investigated. The removal efficiency of Cu2+ was 13.78%, at the initial concentration of 40 mg·L-1 and contact time of 30s.


2011 ◽  
Vol 340 ◽  
pp. 487-491
Author(s):  
Xiao Ming Chen ◽  
Jian Feng Ma ◽  
Ding Long Li

Bentonite-supported magnetite particles (MagBt-p) were prepared by co-precipitation. The adsorption capacity of Bentonite-supported magnetic particles on waste water containing OrangeⅡ was tested. Some influence factor such as the dose, the initial concentration of OrangeⅡ, the pH, the contact time and the presence of surfactant were studied. Results showed that cation surfactant (CTAB) greatly enhanced the adsorption of OrangeⅡ. The maximum removal efficiency was 96.6% at 180mg/L (CTAB) and beyond this concentration there was almost no adsorption. Besides, the removal efficiency was affected by pH and contact time, the maximum removal efficiency was found at pH 2.1-3, the adsorption was rapid during the first 120 min and then equilibrium within 180min.


2019 ◽  
Vol 6 (2) ◽  
pp. 66-74 ◽  
Author(s):  
Raziyeh Hosseini ◽  
Mohammad Hossein Sayadi ◽  
Hossein Shekari

The research was conducted with an aim to assess the efficiency of copper oxide nanoparticles as an adsorbent to remove Ni and Cr. The effect of pH, adsorbent dosage, contact time, initial concentration of metals (Ni and Cr) on the adsorption rate was evaluated and removal of these elements from aqueous solutions was measured using Atomic Absorption Spectrum System (Conter AA700). Moreover, the kinetic and isotherm besides thermodynamic adsorption models were assessed. The highest Ni and Cr removal rate occurred at an optimal pH of 7, and an initial concentration of 30 mg/L, a time period of 30 minutes, and 1 g/L of copper oxide nanoparticles. In fact, with the increase of adsorbent dosage and contact time, the removal efficiency increased and with initial concentration increase of Ni and Cr ions, the removal efficiency reduced. The correlation coefficient of isotherm models viz. Langmuir, Freundlich, Temkin, Redlich-Peterson, and Koble-Corrigan showed that Ni and Cr adsorption via copper oxide nanoparticles better follows the Langmuir model in relation to other models. The results showed that kinetic adsorption of Ni and Cr via copper oxide nanoparticles follows the second order pseudo model with correlation coefficients above 0.99. In addition, the achieved thermodynamic constants revealed that the adsorption process of metals (i.e., Ni and Cr) via copper oxide nanoparticles was endothermic and spontaneous and the reaction enthalpy values for these metals were 17.727 and 11.862 kJ/mol, respectively. In conclusion, copper oxide nanoparticles can be used as effective and environmentally compatible adsorbents to remove Ni and Cr ions from the aqueous solutions


Author(s):  
Tasrina R. Choudhury ◽  
U. H. Bodrun Naher ◽  
Sarifa Akter ◽  
Bilkis A. Begum ◽  
M. Safiur Rahman

In recent years, the rapid industrialization leads to increase industrial discharges without any appropriate treatment. The present study deals with the removal of Cr (III) ions from aqueous solutions by ZnCl2 treated biochar produced from vegetable tanned leather shaving dust. Effect of various process parameters like solution pH, adsorbent dose, adsorbent type, initial Cr (III) concentration and temperature have been studied in batch system. The thermal resistivity and scanning electron microscopy (SEM) analysis were engaged to perceive the surface morphologies of chemically treated and untreated biochar adsorbent. The experimental data was fitted well to the Langmuir adsorption isotherm model and the adsorption efficiency of chromium (III) was found to be maximum (70%) at low values of pH (around 3) for 0.75 g/50 mL dose of ZnCl2 treated biochar adsorbent. The model matrix of 24 full factorial design approach has been applied at a 95% confidence level to find the impact of different variables on removal Cr(III) ions from waste water. This study revealed that three main factors: Adsorbent type (p < 0.0001; 66.39%), pH (p < 0.001; 16.01%) and adsorbent dose (p = 0.032; 12.15%) have significant impact on Cr (III) ions removal efficiency. For using ZnCl2 biochar, Cr(III) ions removal efficiency was increased 66.39% compared to using untreated biochar. Subsequently, two interaction factors: pH-time and adsorbent type-time (α = 0.05, p < 0.05) have shown statistically significant on Cr(III) ions removal efficiency. The ZnCl2 treated biochar adsorbent prepared from vegetable tanned leather shaving dust is efficient and it is proposed that it can be conveniently employed as a low cost alternative in the treatment of industrial waste water.


2019 ◽  
Vol 9 (7) ◽  
Author(s):  
Kamalesh Sen ◽  
Jayanta Kumar Datta ◽  
Naba Kumar Mondal

Abstract In this study, orthophosphoric acid-modified activated char was prepared from Eucalyptus camaldulensis bark (EBAC), and used for removing traces of [N-(phosphonomethyl)glycine] (glyphosate) herbicide from aqueous solution. The adsorption capacity was characterized by zero-point-charge pH, surface analysis, and Fourier transform infrared spectroscopy. Batch mode experiments were conducted to observe the effects of selected variables, namely dose, contact time, pH, temperature, and initial concentration, on adsorption capacity. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models were generated to describe the mechanisms involved in the multilayer adsorption process. The results show that high temperature enhanced the adsorption capacity of EBAC, with a temperature of 373 K yielding adsorption capacity (qmax) and Freundlich parameter (KF) of 66.76 mg g−1 and 9.64 (mg g−1) (L mg−1)−n, respectively. The thermodynamics study revealed entropy and enthalpy of −5281.3 J mol−1 and −20.416 J mol−1, respectively. Finally, glyphosate adsorption was optimized by the Box–Behnken model, and optimal conditions were recorded as initial concentration of 20.28 mg L−1, pH 10.18, adsorbent dose of 199.92 mg/50 mL, temperature of 303.23 K, and contact time of 78.42 min, with removal efficiency of 98%. Therefore, it can be suggested that EBAC could be used as an efficient, low-cost adsorbent for removal of glyphosate from aqueous solutions.


2012 ◽  
Vol 518-523 ◽  
pp. 2708-2711 ◽  
Author(s):  
Ming Zhou ◽  
Hang Xu ◽  
Shu Fa Zhu ◽  
Ya Na Liu

The possible use of biowaste-banana skin as an alternative, low-cost biosorbent and reductant for removal of Cr from aqueous solutions was investigated. Effects of pH, contact time, Cr(VI) initial concentration and temperature on the reduction and biosorption of Cr by banana skin were studied. Experimental results showed that 1 g of dried banana skin could reduce about 230 mg of Cr(VI) to Cr(III), at the condition of 30°C, pH 2 and 300 rpm. The maximum Qeq of Cr(III) by banana skin was 6.3mg g-1 at the Cr(VI) initial concentration of 200mg L-1, 30°C , pH 2 and 300 rpm.


Author(s):  
Davoud Balarak ◽  
Yousef Mahdavi ◽  
Ali Joghatayi

Presence of Fluoride in water is safe and effective when used as directed, but it can be harmful at high doses. In the present paper SiO2 nanoparticles as a adsorbent is used for removal of fluoride from aqueous solution. The effect of various operating parameters such as initial concentration of F-, Contact time, adsorbent dosage and pH were investigated. Equilibrium isotherms were used to identify the possible mechanism of the adsorption process. Maximum adsorption capacity of the SiO2 nanoparticles was 49.95 mg/g at PH=6, contact time 20 min, initial concentration of 25 mg/L, and 25±2 ◦C temperatures, when 99.4% of Fwere removed. The adsorption equilibriums were analyzed by Langmuir and Freundlich isotherm models. It was found that the data fitted to Langmuir (R2=0.992) better than Freundlich (R2=0.943) model. Kinetic analyses were conducted using pseudo first-and second-order models. The regression results showed that the adsorption kinetics was more accurately represented by a pseudo second-order model. These results indicate that SiO2 nanoparticles can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document