Rapid start-up of one-stage deammonification MBBR without addition of external inoculum

2016 ◽  
Vol 74 (11) ◽  
pp. 2541-2550 ◽  
Author(s):  
Linda Kanders ◽  
Daniel Ling ◽  
Emma Nehrenheim

In recent years, the anammox process has emerged as a useful method for robust and efficient nitrogen removal in wastewater treatment plants (WWTPs). This paper evaluates a one-stage deammonification (nitritation and anammox) start-up using carrier material without using anammox inoculum. A continuous laboratory-scale process was followed by full-scale operation with reject water from the digesters at Bekkelaget WWTP in Oslo, Norway. A third laboratory reactor was run in operational mode to verify the suitability of reject water from thermophilic digestion for the deammonification process. The two start-ups presented were run with indigenous bacterial populations, intermittent aeration and dilution, to favour growth of the anammox bacterial branches. Evaluation was done by chemical and fluorescence in situ hybridization analyses. The results demonstrate that anammox culture can be set up in a one-stage process only using indigenous anammox bacteria and that a full-scale start-up process can be completed in less than 120 days.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 350
Author(s):  
Ivar Zekker ◽  
Oleg Artemchuk ◽  
Ergo Rikmann ◽  
Kelvin Ohimai ◽  
Gourav Dhar Bhowmick ◽  
...  

Biological nutrient removal from wastewater to reach acceptable levels is needed to protect water resources and avoid eutrophication. The start-up of an anaerobic ammonium oxidation (anammox) process from scratch was investigated in a 20 L sequence batch reactor (SBR) inoculated with a mixture of aerobic and anaerobic sludge at 30 ± 0.5 °C with a hydraulic retention time (HRT) of 2–3 days. The use of NH4Cl, NaNO2, and reject water as nitrogen sources created different salinity periods, in which the anammox process performance was assessed: low (<0.2 g of Cl−/L), high (18.2 g of Cl−/L), or optimum salinity (0.5–2 g of Cl−/L). Reject water feeding gave the optimum salinity, with an average nitrogen removal efficiency of 80%, and a TNRR of 0.08 kg N/m3/d being achieved after 193 days. The main aim was to show the effect of a hydrazine addition on the specific anammox activity (SAA) and denitrification activity in the start-up process to boost the autotrophic nitrogen removal from scratch. The effect of the anammox intermediate hydrazine addition was tested to assess its concentration effect (range of 2–12.5 mg of N2H4/L) on diminishing denitrifier activity and accelerating anammox activity at the same time. Heterotrophic denitrifiers’ activity was diminished by all hydrazine additions compared to the control; 5 mg of N2H4/L added enhanced SAA compared to the control, achieving an SAA of 0.72 (±0.01) mg N/g MLSS/h, while the test with 7.5 mg of N2H4/L reached the highest overall SAA of 0.98 (±0.09) mg N g/MLSS/h. The addition of trace amounts of hydrazine for 6 h was also able to enhance SAA after inhibition by organic carbon source sodium acetate addition at a high C/N ratio of 10/1. The start-up of anammox bacteria from the aerobic–anaerobic suspended biomass was successful, with hydrazine significantly accelerating anammox activity and decreasing denitrifier activity, making the method applicable for side-stream as well as mainstream treatment.



2018 ◽  
Vol 78 (2) ◽  
pp. 441-451
Author(s):  
Linda Kanders ◽  
Maike Beier ◽  
Regina Nogueira ◽  
Emma Nehrenheim

Abstract The deammonification process, which includes nitritation and anammox bacteria, is an energy-efficient nitrogen removal process. Starting up an anammox process in a wastewater treatment plant (WWTP) is still widely believed to require external seeding of anammox bacteria. To demonstrate the principle of a non-seeded anammox start-up, anammox bacteria in potential sources must be quantified. In this study, seven digesters, their substrates and reject water were sampled and quantitative polymerase chain reaction (qPCR) was used to quantify both total and viable anammox bacteria. The results show that mesophilic digesters fed with nitrifying sludge (with high sludge ages) can be classified as a reliable source of anammox bacteria. Sludge hygienization and dewatering of digestate reduce the amount of anammox bacteria by one to two orders of magnitude and can be considered as a sink. The sampled reject waters contained on average &gt;4.0 × 104 copies mL−1 and the majority of these cells (&gt;87%) were viable cells. Furthermore, plants with side-stream anammox treatment appear to have higher overall quantities of anammox bacteria than those without such treatment. The present study contributes to the development of sustainable strategies for both start-up of anammox reactors and the possibility of improving microbial management in WWTPs.



2001 ◽  
Vol 43 (11) ◽  
pp. 153-160
Author(s):  
A. Haarbo ◽  
P. Harremoës ◽  
C. Thirsing

In 1987 an action plan was passed in the Danish Parliament demanding a considerable reduction of the discharge of nutrients to the aquatic environment in Denmark. Consequently, the two largest wastewater treatment plants in the Copenhagen area had to be upgraded to include nutrient removal. For more than 8 years an extensive effort has been made to determine an optimum solution for this upgrading from a technical and financial point of view. The work included six years of comprehensive pilot plant investigations with the aim of thoroughly studying and interpreting the kinetics of the processes involved. The investigations revealed valuable information particularly concerning limitations of the nitrification process. Consequently, the investigations contributed to an expectation of no unforeseen problems during the implementation of the upgraded plants. This paper presents the results of the start-up of the two full-scale plants with the main emphasis laid on the kinetic performance in relation to the information achieved from the pilot tests. The results showed that the start-up of the full scale plants proceeded with great accuracy as expected from the investigations. Accordingly, the implementation of the plants was carried out successfully, ending an era of more than 10 years in total.



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Shou-Qing Ni ◽  
Jian Zhang

From discovery in the early 1990s to completion of full-scale anammox reactor, it took almost two decades to uncover the secret veil of anammox bacteria. There were three milestones during the commercialization of anammox: the development of the first enrichment culture medium, the completion of the first commercial anammox reactor, and the fast start-up of full-scale anammox plant. Till now, the culture of anammox bacteria experienced a big progress through two general strategies: (a) to start up a reactor from scratch and (b) to seed the reactor with enriched anammox sludge. The first full-scale anammox reactor took 3.5 years to realize full operation using the first approach due to several reasons besides the lack of anammox sludge. On the other hand, the first Asian anammox reactor started up in two months, thanks to the availability of anammox seed. Along with the implementation of anammox plants, anammox eventually becomes the priority choice for ammonium wastewater treatment.



2002 ◽  
Vol 45 (6) ◽  
pp. 127-136 ◽  
Author(s):  
J.J.W. Hulsbeek ◽  
J. Kruit ◽  
P.J. Roeleveld ◽  
M.C.M. van Loosdrecht

Use of dynamic simulation models has become standard practice in The Netherlands. Since the introduction around 5 years ago more then 100 full scale wastewater treatment plants have been modelled. Initially very different approaches have been used varying in calibration approach, amount of sampling and time investment. Based on the accumulated practical experiences the Dutch Foundation of Applied Water Research STOWA has stimulated the development of a protocol to aid in the set-up and calibration of models for full scale wastewater treatment plants. Herein the aim was to develop a protocol, which in practice was easy to use, minimising time and costs effort, but give a reliable and useable method. In this paper this protocol is briefly described.



2019 ◽  
Vol 79 (8) ◽  
pp. 1616-1625 ◽  
Author(s):  
L. Kanders ◽  
J-J. Yang ◽  
C. Baresel ◽  
J. Zambrano

Abstract To be able to fulfill the Paris agreement regarding anthropogenic greenhouse gases, all potential emissions must be mitigated. Wastewater treatment plants should aim to eliminate emissions of the most potent greenhouse gas, nitrous oxide (N2O). In this study, these emissions were measured at a full-scale reject water treatment tank during two different operation modes: nitrification/denitrification (N/DN) operating as a sequencing batch reactor (SBR), and deammonification (nitritation/anammox) as a moving bed biofilm reactor (MBBR). The treatment process emitted significantly less nitrous oxide in deammonification mode 0.14–0.7%, compared to 10% of total nitrogen in N/DN mode. The decrease can be linked to the changed feeding strategy, the lower concentrations of nitrite, a lower load of ammonia oxidized, a shorter aeration time, the absence of non-optimized ethanol dosage or periodic lack of oxygen as well as the introduction of biofilm. Further, evaluation was done how the operational pH set point influenced the emissions in deammonification mode. Lower concentrations of nitrous oxide were measured in water phase at higher pH (7.5–7.6) than at lower pH (6.6–7.1). This is believed to be mainly because of the lower aeration ratio and increased complete denitrification at the higher pH set point.



2011 ◽  
Vol 347-353 ◽  
pp. 3306-3309
Author(s):  
Wikanda Thongnueakhaeng ◽  
Usa Onthong

The scopes of this research were to investigate efficiency of anaerobic digestion system to treat wastewater from air dried rubber sheet production process and to produce and use biogas from this system. Wastewater from air dried rubber sheet production process contains high organic substance and pH about 4.6. Therefore, this wastewater must be adjusted pH to be 7 before feeding to system in start-up period. Two tanks system (The system consisted of 2 digestion tanks, each tank was operated at HRT 7.5 days, total HRT was 15 days) provided higher wastewater treatment efficiency than one tank system (The system consisted of 1 digestion tank, it was operated at HRT 15 days). In this research, full-scale reactor (two tank system, total volume was 800 liters) was set up and operated at agriculturist’s home in Nakorn Sri Thamaraj, Thailand. From the first day to the fifteenth day of operating period, wastewater was adjusted pH from 4.6 to be 7.0 before feeding into reactor. After that, reactor was fed with wastewater which was not adjusted pH (pH about 4.6). The results of full-scale shown that this system provided average removal efficiency of COD, BOD, TSS, TKN and TP about 69.23%, 66.86%, 63.16%, 35.81% and 36.74%, respectively. Biogas production rate of full-scale system was 0.45 m3-gas/m3-reactor.day (0.57 m3-gas/kg CODremoved). Total biogas from full-scale reactor (800 liters) was 360 liters per day; it can be used for cooking about 2 hours per day. Compositions of biogas were methane 65%, carbon dioxide 32% and another gas such as nitrogen and hydrogen sulfide 3%.



2014 ◽  
pp. 626-635 ◽  
Author(s):  
Florian Emerstorfer ◽  
Christer Bergwall ◽  
Walter Hein ◽  
Mats Bengtsson ◽  
John P. Jensen

The investigations presented in this work were carried out in order to further deepen the knowledge about nitrite pathways in the area of sugar beet extraction. The article consists of two parts with different experimental set-up: the first part focuses on laboratory trials in which the fate of nitrate and nitrite was studied in a so-called mini-fermenter. These trials were carried out using juice from the hot part of the cossette mixer of an Agrana sugar factory in Austria. In the experiments, two common sugar factory disinfectants were used in order to study microbial as well as microbial-chemical effects on nitrite formation and degradation caused by bacteria present in the juice. The trials demonstrated that the direct microbial effect (denitrification) on nitrite degradation is more pronounced than the indirect microbial-chemical effect coming from pH value decrease by these bacteria and subsequent nitrite loss. The second part describes the findings from laboratory experiments and full scale factory trials using a mobile laboratory set-up based on insulated stainless steel containers and spectrophotometric detection of nitrite in various factory juices. The trials were made at two Nordzucker factories located in Finland (factory A) and Sweden (factory B). The inhibiting effect of the two common sugar factory disinfectants on nitrite formation was evaluated in laboratory trials, whereas the full scale trials focused on one disinfectant. Other trials to evaluate potential contamination sources of thermophilic nitrite producing bacteria to the extraction system, reactivation of nitrite producing bacteria in raw juice and the effect of a pH gradient on bacterial nitrite activity in cossette mixer juice are also reported.



2003 ◽  
Vol 3 (5-6) ◽  
pp. 321-327 ◽  
Author(s):  
M. Gallenkemper ◽  
T. Wintgens ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. A wide range of endocrine disrupters were found in sewage and effluents of municipal wastewater treatment plants. Toxicological evaluations indicate that conventional wastewater treatment plants are not able to remove these substances sufficiently before disposing effluent into the environment. Membrane technology, which is proving to be an effective barrier to these substances, is the subject of this research. Nanofiltration provides high quality permeates in water and wastewater treatment. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention for nonylphenol (NP) and bisphenol A (BPA) ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. The retention of BPA was found to be inversely proportional to the membrane permeability.



Sign in / Sign up

Export Citation Format

Share Document