Performance evaluation of 388 full-scale waste stabilization pond systems with seven different configurations

2016 ◽  
Vol 75 (4) ◽  
pp. 916-927 ◽  
Author(s):  
Maria Fernanda Espinosa ◽  
Marcos von Sperling ◽  
Matthew E. Verbyla

Waste stabilization ponds (WSPs) and their variants are one the most widely used wastewater treatment systems in the world. However, the scarcity of systematic performance data from full-scale plants has led to challenges associated with their design. The objective of this research was to assess the performance of 388 full-scale WSP systems located in Brazil, Ecuador, Bolivia and the United States through the statistical analysis of available monitoring data. Descriptive statistics were calculated of the influent and effluent concentrations and the removal efficiencies for 5-day biochemical oxygen demand (BOD5), total suspended solids (TSS), ammonia nitrogen (N-Ammonia), and either thermotolerant coliforms (TTC) or Escherichia coli for each WSP system, leading to a broad characterization of actual treatment performance. Compliance with different water quality and system performance goals was also evaluated. The treatment plants were subdivided into seven different categories, according to their units and flowsheet. The median influent concentrations of BOD5 and TSS were 431 mg/L and 397 mg/L and the effluent concentrations varied from technology to technology, but median values were 50 mg/L and 47 mg/L, respectively. The median removal efficiencies were 85% for BOD5 and 75% for TSS. The overall removals of TTC and E. coli were 1.74 and 1.63 log10 units, respectively. Future research is needed to better understand the influence of design, operational and environmental factors on WSP system performance.

2018 ◽  
Vol 78 (3) ◽  
pp. 690-698
Author(s):  
Dan Wang ◽  
Yihui Wu ◽  
Fang Guo ◽  
Zhiping Li ◽  
Guangxue Wu

Abstract The system performance, economic cost and environmental impact of a full-scale anaerobic/anoxic/aerobic/membrane bioreactor (3AMBR) combined with the ozonation process were evaluated. The 3AMBR/ozonation process removed biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids, NH4-N and total phosphorus efficiently, with removal percentages above 94%, while the total nitrogen removal percentage was only 70%. The multiple linear regression analysis showed that hydraulic retention time (HRT) had a significant effect on nitrogen removal. A low HRT benefited nitrogen removal. Ferrous sulfate dosage close to the optimal value and a high mixed liquid suspended solid could enhance the phosphorus removal. The electricity cost accounted for 88% of the total economic costs. Greenhouse gas (GHG) emissions from the BOD oxidation and endogenous decay accounted for more than 50% of total emissions. The second largest GHG emission source was electricity consumption, accounting for 41%. The key to reduce the eutrophication was to enhance nitrogen removal. The composite cost of the 3AMBR/ozonation process was 251 CNY/t CODeq removed, among which economic cost accounted for 82.5%, while environmental impact cost accounted for a small proportion.


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


1995 ◽  
Vol 31 (12) ◽  
pp. 201-210 ◽  
Author(s):  
C. Polprasert ◽  
S. Sookhanich

This study investigated the efficiency and performance of attached-growth waste stabilization ponds (AGWSP) treating a high-strength phenolic wastewater. The experiments employed 4 laboratory-scale pond units installed with an artificial attached-growth media. A control pond unit without attached-growth media (or WSP) was run in parallel for data comparison. The experimental results revealed that the AGWSP units could remove about 99, 50, 45 and 28% of phenol when operated at influent phenol concentrations of 500, 1000, 1500 and 2000 mg/l (corresponding to organic loading rates (OLR) of 180, 360, 540 and 720 kg COD/(ha.day), respectively); these removal efficiencies were consistently higher than those observed in the WSP unit. The influent phenol concentrations of 1000-2000 mg/l resulted in some toxic effects and over loading to the pond system, causing the phenol removal efficiencies to decrease. The amount of phenol loss from the pond water through volatilization was found to be approximately 10%. A relationship between phenol removal rates (excluding volatilization) and phenol dosages to the AGWSP was developed. The superior performance of the AGWSP over the WSP appeared to be due to the biofilm biomass growing on the attached-growth media surface, resulting in increased potential biomass in the pond water.


2012 ◽  
Vol 65 (4) ◽  
pp. 713-720 ◽  
Author(s):  
Ying-Hua Li ◽  
Hai-Bo Li ◽  
Jing Pan ◽  
Xin Wang ◽  
Tie-Heng Sun

This study was to investigate domestic treatment efficiency of a subsurface wastewater infiltration (SWI) system over time. The performances of a young SWI system (in Shenyang University, China, fully operated for one year) and a mature SWI system (in Shenyang Normal University, China, fully operated for seven years) under the same operation mode were contrasted through field-scale experiments for one year. The performance assessment for these systems is based on physical and chemical parameters collected. The removal efficiencies within the young system were relatively high if compared with the mature one: for biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 95.0, 89.1, 98.1, 87.6 and 98.4%, respectively. However, the removal efficiencies decreased over time. The mean removal efficiencies for the mature SWI system were as follows: BOD (89.6%), COD (87.2%), SS (82.6%), NH3-N (69.1%) and TP (74.4%). The results indicate that the mature SWI system successfully removed traditional pollutants such as BOD from domestic wastewater. However, the nutrient reduction efficiencies (including NH3-N and TP) decreased after seven years of operation of the mature SWI system. Meanwhile, the SWI system did not decrease the receiving surface water quality.


1999 ◽  
Vol 40 (1) ◽  
pp. 45-52
Author(s):  
A. Rakkoed ◽  
S. Danteravanich ◽  
U. Puetpaiboon

Nitrogen removal from wastewater from rubber factories using attached-growth waste stabilization ponds (AGWSP) was evaluated. Usually, wastewaters generated from rubber factories such as concentrated latex factories and rubber sheet factories contain a high amount of nitrogen originating from natural rubber and ammonia compounds added in the production processes. From an investigation of 3 rubber factories at Songkhla, Thailand, average concentrations of TKN, NH3-N and Org-N in raw factory wastewater were found to be 889, 578 and 311 mg/l respectively. Two series of laboratory waste treatment ponds, waste stabilization ponds (WSP) and attached-growth waste stabilization ponds were investigated to compare the efficiency of nitrogen removal from wastewater from a concentrated latex factory. The wastewater fed to the experimental units was collected from the effluent of the anaerobic treatment pond at the factory. The experiments were conducted with hydraulic retention times (HRT) of 40 and 20 days. Another experiment run with an HRT of 40 days together with 50% recirculating of effluent was also conducted. Finally, an experiment run at an HRT of 4 days was carried out in order to observe the effect of shock loading. The results revealed that TKN, NH3-N and BOD5 removal efficiencies in AGWSP were higher than in control ponds (WSP). Increased removal efficiencies were achieved which resulted from an increase in biomass on media in the pond water.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 237-246 ◽  
Author(s):  
D. Chabir ◽  
H. El Ouarghi ◽  
Y. Brostaux ◽  
J. L. Vasel

Respirometric tests have been undertaken on sediments in aerated lagoons and waste stabilization ponds to quantify their oxygen demand and to determine the main factors governing the process. Factors such as seasonal variations, temperature, substrate, sediment layer thickness, density of macro-invertebrates and suspended sediments were investigated. The results showed that temperature and substrate concentration are the main factors that influence sediment oxygen demand; followed by spatial heterogeneity and resuspension of sediments, whereas the density of macro-invertebrates could have an effect in summer (hot season). Sediment layer thickness had no effect. A model of sediment oxygen demand is developed for the two main factors (temperature and substrate) with an r2 of 0.98.


2018 ◽  
Vol 78 (9) ◽  
pp. 1852-1860 ◽  
Author(s):  
Xin Zhao ◽  
Xuejie Li ◽  
Nan Qi ◽  
Zhongtian Fu ◽  
Meng Chen ◽  
...  

AbstractAn anaerobic photosynthetic bacterium, with chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total phosphorus (TP) and sulfide (S2−) simultaneous removal ability, strain SU6, was isolated and identified as belonging to Ectothiorhodospira magna. Its removal efficiencies were simultaneously evaluated in batch culture and influenced in sequencing batch culture. The maximum COD, NH3-N, TP and S2− removal rates of 93.04%, 86.70%, 37.55% and 99.99% were obtained in batch culture with an initial pH 8.0 at 35 °C after 72 h. The simultaneous removal efficiency was enhanced in sequencing batch culture, and 789.27 mg/L COD, 68.91 mg/L NH3-N, 70.20 mg/L S2− and 5.26 mg/L TP were removed by the end of the last cycle within 24 h. This was the first time of reporting contaminants' simultaneous removal by a pure-cultured photosynthetic bacterium. The experimental results demonstrate that E. magna can efficiently serve as a good candidate in anaerobic wastewater contaminants' simultaneous removal, and maybe as another model anaerobic photosynthetic microorganism for water purification investigations.


2015 ◽  
Vol 19 (2) ◽  
pp. 7
Author(s):  
Andrés Felipe Torres Franco ◽  
Nancy Vásquez Sarria ◽  
Jenny Rodriguez Victoria

A pilot-scale study was conducted to evaluate a traditional contact stabilization activated sludge system (CSASC) and a modified CSAS (CSASM) treating domestic wastewater. The CSASC system was comprised of a contact reactor (CR), a stabilization reactor (SR) and a secondary settler (SS); the CSASM included a second CR, a second SS (CR2 and SS2), and a modified SR (SRM) divided into four zones: an attached-suspended growth zone which allowed the system to reach an average sludge retention time close to 36 d and favored the occurrence of nitrification; an anoxic zone for denitrification occurrence; an aerated suspended growth zone with a high presence of organic carbon; and an additional aerated suspended growth zone with a high ammonia concentrations environment. The CSASC’s removal efficiencies of chemical oxygen demand (COD) and total ammonia nitrogen (TAN) were respectively 94±4 % and 53±12%; whereas CSASM’s efficiencies were 88±7% for COD and 92±7% for TAN. Concentrations of TAN and NO3 --N in the CSASC’s final effluent were 14.3±5.2 and 5.0±2.9 mg×L-1; and 4.8±4.4 and 9.1±5.8 mg×L-1 in the CSASM’s final effluent. Results demonstrated that the proposed configuration obtained higher nitrogen removal efficiencies than traditional CSAS.</p>


2013 ◽  
Vol 69 (2) ◽  
pp. 335-342 ◽  
Author(s):  
Guenter Langergraber ◽  
Alexander Pressl ◽  
Raimund Haberl

This paper describes the results of the first full-scale implementation of a two-stage vertical flow constructed wetland (CW) system developed to increase nitrogen removal. The full-scale system was constructed for the Bärenkogelhaus, which is located in Styria at the top of a mountain, 1,168 m above sea level. The Bärenkogelhaus has a restaurant with 70 seats, 16 rooms for overnight guests and is a popular site for day visits, especially during weekends and public holidays. The CW treatment system was designed for a hydraulic load of 2,500 L.d−1 with a specific surface area requirement of 2.7 m2 per person equivalent (PE). It was built in fall 2009 and started operation in April 2010 when the restaurant was re-opened. Samples were taken between July 2010 and June 2013 and were analysed in the laboratory of the Institute of Sanitary Engineering at BOKU University using standard methods. During 2010 the restaurant at Bärenkogelhaus was open 5 days a week whereas from 2011 the Bärenkogelhaus was open only on demand for events. This resulted in decreased organic loads of the system in the later period. In general, the measured effluent concentrations were low and the removal efficiencies high. During the whole period the ammonia nitrogen effluent concentration was below 1 mg/L even at effluent water temperatures below 3 °C. Investigations during high-load periods, i.e. events like weddings and festivals at weekends, with more than 100 visitors, showed a very robust treatment performance of the two-stage CW system. Effluent concentrations of chemical oxygen demand and NH4-N were not affected by these events with high hydraulic loads.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jian Sun ◽  
Piljae Im ◽  
Yeonjin Bae ◽  
Jeff Munk ◽  
Teja Kuruganti ◽  
...  

AbstractHVAC and refrigeration system fault detection and diagnostics (FDD) has attracted extensive studies for decades; however, FDD of supermarket refrigeration systems has not gained significant attention. Supermarkets consume around 50 kWh/ft2 of electricity annually. The biggest consumer of energy in a supermarket is its refrigeration system, which accounts for 40%–60% of its total electricity usage and is equivalent to about 2%–3% of the total energy consumed by commercial buildings in the United States. Also, the supermarket refrigeration system is one of the biggest consumers of refrigerants. Reducing refrigerant usage or using environmentally friendly alternatives can result in significant climate benefits. A challenge is the lack of publicly available data sets to benchmark the system performance and record the faulted performance. This paper identifies common faults of supermarket refrigeration systems and conducts an experimental study to collect the faulted performance data and analyze these faults. This work provides a foundation for future research on the development of FDD methods and field automated FDD implementation.


Sign in / Sign up

Export Citation Format

Share Document