Demonstration of energy-saving membrane bioreactor (MBR) systems

2019 ◽  
Vol 79 (3) ◽  
pp. 448-457 ◽  
Author(s):  
Kyoko Yamashita ◽  
Hiroki Itokawa ◽  
Toshikazu Hashimoto

Abstract Membrane bioreactors (MBRs) have the advantages of achieving excellent effluent quality, a small footprint and smooth operation and maintenance. On the other hand, its high energy consumption remains a critical challenge for MBR application. Japan Sewage Works Agency has conducted a series of joint researches with several private companies since 2012 and developed four kinds of energy-saving MBR systems. Based on the results of long-term pilot-scale demonstrations, specific energy consumption (SEC) per unit treated effluent volume was calculated for each MBR system, resulting in all systems achieving SEC of 0.4 kWh/m3 or less. To meet an additional requirement for expanding MBR application, it is also necessary to establish the applicability of MBR systems to combined sewer systems, suffering from occasional inflow fluctuation caused by rainfall. The capability of temporary higher flux operation during and after rainy weather was also demonstrated with three of the four developed systems.

2015 ◽  
Vol 4 (1) ◽  
pp. 4
Author(s):  
Yang Zhang ◽  
Yazhi Hu

<p>Construction industry has been one of China's energy guzzlers, if we can reduce the energy consumption of the building industry through the use of new materials or new technologies, which will have a significant impact on the development of economy and society. The status quo of China's construction industry, high energy consumption, paper use energy-saving technologies in the field of construction works to expand the analysis, discusses the necessity of the construction industry currently uses energy-saving insulation materials and analyzes the current energy field of construction engineering technology application status, on the basis of focus on the application of energy-saving insulation materials in construction, particularly in the new system and the new glass curtain wall insulation material in construction applications, which further enhance the energy-saving technology within the field of construction engineering the application level has a certain reference.</p>


2014 ◽  
Vol 505-506 ◽  
pp. 405-409
Author(s):  
Jun Ke Liang ◽  
Zhi Gang Liu ◽  
Yuan Chun Huang

The High Energy Consumption of the Current Urban Rail Transit Industry, High Efficiency Energy Saving Measures must be Taken. this Paper Entity from the Traction Energy Consumption, Building Structure and Operating Equipment Aspects of the Current Situation, Described the Energy Saving Strategies. Aiming at the Present Problems Existing in Energy Saving Practice, this Article Puts Forward the Comprehensive Energy Saving System which Contains Optimization Design in Planning Period, Low Resource Consumption in Construction Period, Energy Saving Work in Operation Period. above all, Implement Energy Saving Practice at Every Concrete Work of Reaching.


2019 ◽  
Vol 9 (21) ◽  
pp. 4501 ◽  
Author(s):  
Yongteng Sun ◽  
Ming Lu ◽  
Yongjun Sun ◽  
Zuguo Chen ◽  
Hao Duan ◽  
...  

High energy consumption is an important issue affecting the operation and development of wastewater treatment plants (WWTPs). This paper seeks energy-saving opportunities from three aspects: energy application, process optimization, and performance evaluation. Moreover, effective energy-saving can be achieved from the perspective of energy supply and recovery by using green energy technologies, including wastewater and sludge energy recovery technologies. System optimization and control is used to reduce unnecessary energy consumption in operation. Reasonable indexes and methods can help researchers evaluate the application value of energy-saving technology. Some demonstration WWTPs even can achieve energy self-sufficiency by using these energy conservation technologies. Besides, this paper introduces the challenges faced by the wastewater treatment industry and some emerging energy-saving technologies. The work can give engineers some suggestions about reducing energy consumption from comprehensive perspectives.


2012 ◽  
Vol 524-527 ◽  
pp. 1217-1222 ◽  
Author(s):  
Zhi Qiang Huang ◽  
Zhen Chen ◽  
Gang Zheng ◽  
Jian Qiang Xue ◽  
Xue Yuan Li

With the characteristics of low permeability, pressure and abundance, it's extremely hard to exploit the super low permeability reservoirs in ChangQing oil field. For this reason, the water injection recovery technique has been widely used. Analysis showed that a serious problem of high energy consumption exist in the water injection system, the power consumption of which accounts for about 44%. And the energy cost of pump units reach up to 43%, it's the highest energy consumption link in the system. In this paper the load rate classification method (LRCM) is firstly adopted to statistical analyze water injection stations, which are divided into the owing and over load rate stations. As a result, the owing load rate stations accounts for 83.8%, with a serious phenomenon of the Big Horse Pull A Small Carriage, causing the large-scale backflow in the station, and the efficiency is low, the energy consumption is on the high side. Aimed at water injection stations with different load rate, the methods of reasonable shutting down the pumps, pump replacement, optimizing the transmission ratio and piston size, as well as the speed control technology have been used to make the outlet flow and actual demand reasonable matching. The test result shows that the energy saving technology is well targeted, simple, practical and low cost. The pump units’ efficiency improves obviously, the consumption reduces by 10%, which greatly improve the oilfield economic benefits.


2018 ◽  
Vol 77 (9) ◽  
pp. 2242-2252 ◽  
Author(s):  
M. Vaccari ◽  
P. Foladori ◽  
S. Nembrini ◽  
F. Vitali

Abstract One of the largest surveys in Europe about energy consumption in Italian wastewater treatment plants (WWTPs) is presented, based on 241 WWTPs and a total population equivalent (PE) of more than 9,000,000 PE. The study contributes towards standardised resilient data and benchmarking and to identify potentials for energy savings. In the energy benchmark, three indicators were used: specific energy consumption expressed per population equivalents (kWh PE−1 year−1), per cubic meter (kWh/m3), and per unit of chemical oxygen demand (COD) removed (kWh/kgCOD). The indicator kWh/m3, even though widely applied, resulted in a biased benchmark, because highly influenced by stormwater and infiltrations. Plants with combined networks (often used in Europe) showed an apparent better energy performance. Conversely, the indicator kWh PE−1 year−1 resulted in a more meaningful definition of a benchmark. High energy efficiency was associated with: (i) large capacity of the plant, (ii) higher COD concentration in wastewater, (iii) separate sewer systems, (iv) capacity utilisation over 80%, and (v) high organic loads, but without overloading. The 25th percentile was proposed as a benchmark for four size classes: 23 kWh PE−1 y−1 for large plants &gt; 100,000 PE; 42 kWh PE−1 y−1 for capacity 10,000 &lt; PE &lt; 100,000, 48 kWh PE−1 y−1 for capacity 2,000 &lt; PE &lt; 10,000 and 76 kWh PE−1 y−1 for small plants &lt; 2,000 PE.


2011 ◽  
Vol 128-129 ◽  
pp. 1217-1221
Author(s):  
Quan Le Liu ◽  
Wei Chen

The quantity of official cars increased with the speed exceeding 20% every year which need much more energy be consumed to meet the official car needs. To investigate the energy saving potential of official cars in China, This paper introduced the strategy method with systemic viewpoint to reduce official cars energy consumption through analyzing the reason of high energy consuming of official cars. The resulted showed that only reduce the quantities and maintenance cost, and decline the displacement and using frequency can realize fuel efficiency of official cars.


2010 ◽  
Vol 5 (4) ◽  
Author(s):  
Guihe Tao ◽  
Kiran Kekre ◽  
Maung Htun Oo ◽  
Bala Viswanath ◽  
Aliman MD Yusof ◽  
...  

One of the major components of MBR operating expenditure is energy consumption. This paper presents our six-year journey of energy reduction and optimization in MBR systems through various pilot and demonstration studies. Through comprehensive and systematic MBR optimisation studies, the specific energy consumption was reduced from 1.3 kWh m−3 to less than 0.8 kWh m−3 by increasing membrane flux and reducing aeration at 300 m3 per day pilot scale plants. Through energy audit, the key energy consumption components including process aeration, membrane scouring rate, SRT, MLSS level, MLSS recirculation, and energy efficient equipment selection were identified, and these were optimised one by one at 23,000 m3 per day municipal scale MBR demonstration plant after the baseline had been set up. The specific energy consumption was further reduced to 0.37 kWh m−3.


2012 ◽  
Vol 27 (4) ◽  
pp. 702-706 ◽  
Author(s):  
Stefan Anderssou ◽  
Christer Sandberg ◽  
Per Engstrand

Abstract The aim of this study was to investigate the influence of lang fibre concentration on Ioadability and pulp properties during LC refming of mechanical pulp. Lang fibre concentration was adjusted to three different Ievels by screen fractionation of the pulp. The three pulps were refined in a single disc pilot scale LC refiner at simi1ar process conditions. Increased lang fibre concentration suppmied a larger refiner gap and resulted in less fibre . cutting at a given specific energy consumption. The higher lang fibre concentration probably contributed to a stronger fibre network that maintained a !arger refining gap at certain specific energy consumption. Increased long fibre concentration also enabled a higher tensile index increase in the LC refmer at certain fibre length reduction. The study supports a process combining LC refining with screen fractionation, where the lang fibre fraction is recycled to the refiner feed. This enables a . higher Ioadability and a more effective utilisation of the LC refiner. By using this technology, overall specific energy consumption can be reduced if a !arger share of the refining is performed in LC rather than HC refining.


2021 ◽  
Vol 64 (2) ◽  
pp. 89-94
Author(s):  
N. A. Cheremiskina ◽  
N. V. Shchukina ◽  
N. B. Loshkarev ◽  
V. V. Lavrov

One of the most energy-intensive industries is ferrous metallurgy. The metallurgical sector in industrially developed countries is reducing its specific energy consumption per one ton of products by approximately 1.0 – 1.5 % per annum. In Russia, obsolete technology is the main reason for the high-energy intensity of industrial product. Energy saving in industrial production is associated with production technology and the scope of fuel and energy resources consumption. Therefore, ways to improve energy efficiency focus on reducing energy consumption of any kind during a specific process in a specific process or thermal unit. Ensuring the economical operation of furnace units requires detailed preliminary and verification analyses, upgrading and introduction of state-of-the-art equipment. The study presents a flow diagram and features of thermal operation of a new drum-type chamber furnace for heating metal products for quenching. The technical parameters of the furnace, the results of the thermo-technical analysis, the heat balance and the specific fuel consumption as applicable to the created design are also presented. The flow diagram of the furnace has significant advantages in terms of the energy efficiency of fuel as compared to the roller and conveyor methods of metal transportation. Placing blanks on the drum significantly reduces the complexity of their transportation. Thanks to its small length the proposed design is compact and easy to place in a workshop. The use of a recuperative fuel burning device allows the efficient use of the heat of waste gases in the heating process. The proposed design and method of products transportation in the furnace working space can be used for the heat treatment of bars, pipes, strips, as well as rolled steel of various shapes.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2804
Author(s):  
Dong-Ho Kim ◽  
Changkyoo Choi ◽  
Chulmin Lee ◽  
Rusnang Syamsul Adha ◽  
Thanh-Tin Nguyen ◽  
...  

Roughing filters are types of porous media filter used in pretreatment systems where the raw water contains a large amount of suspended particles (SPs) and organic matter. Mesh tube filtration (MTF) media are roughing-filter media composed of low-density polyethylene used for SP removal during wastewater treatment. In this study, we present an improved MTF design—a porous filter bed (PFB), which exhibits superior SP removal performance compared to conventional MTF media. We then compare the applicability of MTF and PFB to both the primary pretreatment process for seawater desalination and the water reuse process. In bench-scale SP removal experiments, PFB shows removal rates of 46.7%, 68.0%, 67.6%, and 68.4% at hydraulic retention times of 15, 20, 30, and 60 min, respectively, which are better than those of MTF. The specific energy consumption (SEC) of batch dissolved air flotation (DAF) was known to range from 0.035 to 0.047 kWh/m3, whereas the SEC calculated for pilot-scale MTF and PFB is 0.027 kWh/m3 and minimum energy for influent supply, respectively. This suggests that PFB can compete with DAF as a primary pretreatment process. MTF predominantly removes SPs by sedimentation, whereas SP removal in PFB typically occurs via deposition of SPs on the mesh tube media.


Sign in / Sign up

Export Citation Format

Share Document