scholarly journals Synthesis and characterization of modified activated carbon (MgO/AC) for methylene blue adsorption: optimization, equilibrium isotherm and kinetic studies

Author(s):  
Vahab Ghalehkhondabi ◽  
Alireza Fazlali ◽  
Keyhan Ketabi

Abstract Methylene blue (MB) is the cationic dye that is widely used for coloring cotton, wool, and silk. Since MB is harmful to human beings and toxic to microorganisms, there is the need to find cheap and efficient methods for removal of MB from wastewater prior to disposal into natural waters. In the present study, MB adsorption potential of MgO/AC prepared using a sol–gel-thermal deep-coating method was compared with the activated carbon (AC). The central composite design (CCD) as a method of the response surface methodology (RSM) was applied to minimize the number of runs and process optimization. The characterization of the microporous MgO/AC composite showed that the magnesium oxide nanoparticles were successfully coated on the AC and the BET specific surface area of AC and MgO/AC were 1,540 and 1,246 m2/g, respectively. The MB removal efficiency and the maximum adsorption capacity of AC and MgO/AC were 89.6, 97.5% and 571.7, 642.3 mg/g, respectively under optimum operational conditions of initial dye concentration of 100.9 mg/L, the adsorbent dosage of 69.4 mg/100 mL, pH of 10.2 and contact time of 149.1 min. According to an analysis of variance (ANOVA), the initial dye concentration and its interaction with the other effective factors have a large impact on adsorption efficiency. Furthermore, the mechanism of adsorption followed the Langmuir isotherm (R2 = 0.9935, Δqe = 2.9%) and adsorption kinetics fitted by the pseudo-second-order model (R2 = 0.9967, Δqe = 6.6%). Finally, our results suggest that the prepared MgO/AC is an efficient and promising material for dye wastewater treatment.

2019 ◽  
Vol 41 (1) ◽  
pp. 62-62
Author(s):  
Farida Bouremmad Farida Bouremmad ◽  
Abdennour Bouchair Abdennour Bouchair ◽  
Sorour Semsari Parapari Sorour Semsari Parapari ◽  
Shalima Shawuti and Mehmet Ali Gulgun Shalima Shawuti and Mehmet Ali Gulgun

Biosorbents can be an alternative to activated carbon. They are derived from agricultural by-products or aquatic biomass. They are low cost and they may have comparable performances to those of activated carbon. The present study focuses on the characterization of the Corallina Elongata (CE) alga and its adsorption performance for Methylene Blue (MB), this alga is found in abundance at the Mediterranean coast of the city of Jijel in eastern Algeria. The dried alga was characterized using various characterization techniques such as DTA, TG, FTIR, XRD, SEM and EDX, which showed that the material consists essentially of a calcite containing magnesium. Batch adsorption studies were carried out and the effect of experimental parameters Such as pH, initial dye concentration, temperature, adsorbent dose and contact time, on the adsorption of MB was studied. The kinetic experimental data were found to conform to the pseudo-second-order model with good correlation and equilibrium data were best fitted to The Langmuir model, with a maximum adsorption capacity of 34.4 mg/g. The adsorption isotherms at various temperatures allowed the determination of certain thermodynamic parameters (ΔG, ΔH and ΔS). Finally, the adsorption results showed a good affinity between CE and MB with a high adsorption capacity.


2019 ◽  
Vol 21 (4) ◽  
pp. 89-97 ◽  
Author(s):  
Yuqi Wang ◽  
Yanhui Li ◽  
Heng Zheng

Abstract New kind of adsorbent was produced from Trichosanthes kirilowii Maxim shell. The KOH activation technology for preparation of Trichosanthes kirilowii Maxim shell activated carbon (TKMCK) was optimized. Using methylene blue as the sample adsorbate, the adsorption behavior was systematically investigated in terms of the activation agent and temperature, the adsorption temperature and time, the initial adsorbate pH and concentration, as well as the dosage of adsorbent. Surface physical morphology of the TKMCK prepared was observed by scanning electron microscopy (SEM), while the functional groups were determined with Fourier transform infrared (FTIR) spectra. Kinetic studies indicated that the adsorption process was more consistent with the pseudo-second-order kinetic. Both Langmuir and Freundlich isotherms were employed to fit the adsorption data at equilibrium, with the former giving a maximum adsorption capacity of 793.65 mg/g at 323 K. BET surface area of as-prepared TKMCK was 657.78 m2/g.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sivarama Krishna Lakkaboyana ◽  
Khantong Soontarapa ◽  
Nabel Kalel Asmel ◽  
Vinay Kumar ◽  
Ravi Kumar Marella ◽  
...  

AbstractThe present study focused on the synthesis of copper hydroxide nanowires decorated on activated carbon (Cu(OH)2-NWs-PVA-AC). The obtained Cu(OH)2-NWs-PVA-AC Nano-composite was distinguished by XRD, SEM, EDX, BET, FTIR and XPS respectively. Besides, different variables such as solution pH, and initial dye concentration, contact time, and temperature were performed on the adsorption efficiency of MB in a small batch reactor. Further, the experimental results are analyzed by various kinetic models via PFO, PSO, intra-particle diffusion and Elovich models, and the results revealed that among the kinetic models, PSO shows more suitability. In addition, different adsorption isotherms were applied to the obtained experimental data and found that Langmuir–Freundlich and Langmuir isotherm were best fits with the maximum adsorption capacity of 139.9 and 107.6 mg/g, respectively. The Nano-composite has outstanding MB removal efficiency of 94–98.5% with a span of 10 min. and decent adsorption of about 98.5% at a pH of 10. Thermodynamic constants like Gibbs free energy, entropy, and enthalpy were analyzed from the temperature reliance. The results reveal the adsorption processes are spontaneous and exothermic in nature. The high negative value of ΔG° (− 44.11 to − 48.86 kJ/mol) and a low negative value of ΔH° (− 28.96 kJ/mol) show the feasibility and exothermic nature of the adsorption process. The synthesized dye was found to be an efficient adsorbent for the potential removal of cationic dye (methylene blue) from wastewater within a short time.


2006 ◽  
Vol 317-318 ◽  
pp. 807-810 ◽  
Author(s):  
Chang Yeoul Kim ◽  
Jin Wook Choi ◽  
Tae Yeoung Lim ◽  
Duck Kyun Choi

Electrochromic WO3 thin film was prepared by using tungsten metal solution in hydrogen peroxide as a starting solution and by sol-gel dip coating method. XRD pattern showed that tungsten oxide crystal phase formed at 400. In the view of electrochemical property, WO3 thin film which was heat-treated at 300 and was amorphous had better than that of the crystalline phase.


2012 ◽  
Vol 64 (1) ◽  
pp. 219-223 ◽  
Author(s):  
M. Cavas ◽  
R. K. Gupta ◽  
A. A. Al-Ghamdi ◽  
Omar A. Al-Hartomy ◽  
Farid El-Tantawy ◽  
...  

2014 ◽  
Vol 9 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Rajeshwar M. Shrestha ◽  
Margit Varga ◽  
Imre Varga ◽  
Amar P. Yadav ◽  
Bhadra P. Pokharel ◽  
...  

Activated carbons were prepared from Lapsi seed stone by the treatment with H2SO4 and HNO3 for the removal of Ni (II) ions from aqueous solution. Two activated carbon have been prepared from Lapsi seed stones by treating with conc.H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of Ni(II) ions. Chemical characterization of the resultant activated carbons was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxyl, lactones and phenols in the carbons. The optimum pH for nickel adsorption is found to be 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Ni (II) on the resultant activated carbons was 28.25.8 mg g-1 with H2SO4 and 69.49 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Ni (II) from water. DOI: http://dx.doi.org/10.3126/jie.v9i1.10680Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 166–174


Author(s):  
Md. Shahin Azad ◽  
Syaza Azhari ◽  
Mohd Sukri Hassan

The utilization of biopolymer derived from Moringa oleifera bark using ZnCl2 and H2SO4 as activating agents for eliminating Methylene blue, Escherichia coli and Pseudomonas aeruginosa from producing wastewater. In this study, Methylene blue and both bacteria were effectively adsorbed by activated carbon with lowest dosage. The activated carbon was prepared from natural-by product of Moringa oleifera bark by pyrolysis in a furnace at 700°C for 1 h. The characteristics of activated carbon have been determined using Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET), pHzpc (zero point charge), and FTIR spectroscopy. The obtained result were closely fitted with Freundlich isotherm model and adsorption kinetics follow the pseudo-second order model with the highest value of correlation coefficient (R2~1). Adsorption quantity was dose dependent and bacteria were maximum adsorbed using 10 mg of activated carbon as well as 25mg for methylene blue. The maximum adsorption capacity showed within 1 hour. The bacterial load was reduced by 98% for E. coli, 96% for P. aeruginosa as well as methylene blue reduced 94.2% from aqueous solution using batch adsorption methods. Adsorption process controlled by film diffusion mechanism. These result proposed that the activated carbon of Moringa oleifera can be used as a good adsorbent for the removal of Methylene blue, E. coli and P. aeruginosa.


2021 ◽  
Vol 06 (03) ◽  
Author(s):  
Nora Seghairi ◽  

Phosphates in natural waters and whatever their origin, promote the formation of algae, reduce dissolved oxygen and reduce biodiversity in aquatic ecosystems. At high doses, phosphate salts can cause health problems. The objective of our study was to develop a simple, efficient and environmentally friendly sorption depollution technique on available and inexpensive media. We have studied the adsorption of phosphate on activated carbons prepared from date kernels. Batch tests were carried out in order to study different operating parameters such as the effect of contact time, pH, initial phosphate concentration and adsorbent dosage and adsorption kinetic. The sorption equilibrium was analyzed by Langmuir, Freundlich isotherms model. Results show that the phosphate adsorption was reversible and the quantity adsorbed reached its maximum value (14.49 mg/g) after 40 minutes. It was also found that phosphate uptake was affected by variation of pH, initial concentration of phosphate and activated carbon dosage. The adsorption improved with an acidic pH (pH = 6), initial concentration and adsorbent dosage. The results of kinetic studies revealed that adsorption phosphate on activated carbon based on date kernels (Biocar) and the intra-particle diffusion involved in the adsorption mechanism. Also, isotherm study showed that Langmuir isotherm best fit the data and the adsorption was a physical type.


2013 ◽  
Vol 755 ◽  
pp. 53-60
Author(s):  
Esthela Ramos Ramírez ◽  
Norma Leticia Gutiérrez Ortega ◽  
Cesar Augusto Contreras Soto ◽  
Gustavo Rangel Porras

In this work there was studied the structural, textural and effect that has treat thermal on the removal of Cr (VI) of nanoMg/Al hydrotalcite (NHT) synthesized by the sol-gel method with a ratio of Mg/Al=3. These present the characterization of the nanoMg/Al hydrotalcite before and after Cr (VI) removal, as well as the kinetic studies and of balance. In agreement with the results, when the NHT are thermal treated to 350 °C the hydrotalcite crystalline structure remains but the textural properties are improved and structural. The NHT synthesized by the sol-gel method present a good capacity of removal with values of 91 mg of Cr (VI) removed / g of NHT. The above mentioned capacity of removal gets improved after thermal treating the material, reaching values of removal of 124 mg of Cr (VI) removed / g of NHT. The NHT with the Cr (VI) absorbed show decrease of the crystalline structure, as well as a saturation of the pores that annuls the porosity due to the fact that the Cr (VI) lodges both at the pores and at the intersheets. The time that him takes the HLM to remove the Cr (VI) of the watery solution is alone of 2 minutes, with which it is possible to conclude that the NHT have an excellent aptitude to remove Cr (VI) of watery solutions in an interval of very short time.


2021 ◽  
Vol 31 ◽  
pp. 100607
Author(s):  
Mojeed O. Bello ◽  
Nasiru Abdus-Salam ◽  
Folahan A. Adekola ◽  
Ujjwal Pal

Sign in / Sign up

Export Citation Format

Share Document