scholarly journals Removal of pentachlorophenol from contaminated wastewater using phytoremediation and bioaugmentation processes

Author(s):  
Rim Werheni Ammeri ◽  
Khadija Kraiem ◽  
Khalifa Riahi ◽  
Saiefeddine Eturki ◽  
Wafa Hassen ◽  
...  

Abstract The phytoremediation procedure was conducted by Lemna gibba (L) and Typha angustifolia (T) and the bioaugmentation procedure used P. putida HM627618. The ability of the selected P. putida HM627618 to tolerate and remove PCP (200 mg L−1) was measured by high performance liquid chromatography analysis and optical density at 600 nm. Five different experiments were conducted in secondary treated wastewater for PCP testing removal (100 mg L−1) including two phytoremediation assays (T + PCP; L + PCP), three bioaugmentation-phytoremediation assays (T + B + PCP; L + B + PCP; L + T + B + PCP) and a negative control assay with PCP. Various analytical parameters were determined in this study such as bacterial count, chlorophylls a and b, COD, pH and PCP content. The main results showed that the average PCP removal by P. putida HM627618 was around 87.5% after 7 days of incubation, and 88% of PCP removal was achieved by treatment (T + B) after 9 days. During these experiments, pH, COD and chloride content showed a net increase in all treatments. The chlorophylls a and b in case of (T) and (L) Chlorophylls a and b for T and L phytoremediation showed a decrease with a value less than 10 μg/mg of fresh material after 20 days of cultivation.

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1112
Author(s):  
Yan Yang ◽  
Liangfang Dai ◽  
Decai Wu ◽  
Limin Dong ◽  
Yisheng Tu ◽  
...  

Huperzia serrata is a traditional herb and endangered Chinese medicinal material, which has attracted much attention due to its production of Huperzine A (HupA). In vitro propagation of H. serrata is considered a new way to relieve the resource pressure of H. serrata. In this study, three different genotypic wild H. serrata were used for in vitro propagation. Then, the antioxidant activity and the content of HupA in the regenerated H. serrata were investigated. The results showed the survival rate of the explant was increased to 25.37% when using multiple sterilization processes. The best induction medium for H. serrata was the Schenk and Hildebrandt (SH) medium supplemented with 0.5 mg·L−1 Naphthalene acetic acid (NAA) and 0.1 mg·L−1 2,4-Dichlorophenoxyacetic acid (2,4-D), where the regeneration rate of the explant was to 57.04%. The best proliferation medium was the SH medium with NAA (1.0 mg·L−1), as the biomass of in vitro tissue increased 164.17 ± 0.41 times. High-performance liquid chromatography analysis showed that the in vitro culture of three genotypes could produce HupA and the content of HupA was 53.90–87.17 µg·g−1. The antioxidant experiment showed that the methanol extract of in vitro H. serrata had higher antioxidant activity than that of wild H. serrata. This study provides a reliable in vitro H. serrata culture protocol and laid an important foundation for the antioxidant capacity of the thallus and the content of HupA.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 981
Author(s):  
Barbara Słomka-Słupik ◽  
Jacek Podwórny ◽  
Beata Grynkiewicz-Bylina ◽  
Marek Salamak ◽  
Bibianna Bartoszek ◽  
...  

The article analyzes the composition of concrete taken from various elements from a 100-year-old bridge in South Poland, so as to analyze its technical condition. The main methods applied during experimental work were: Designation of pH, free chloride content, salinity, XRD and SEM examinations, as well as metals determination using inductively coupled plasma mass spectrometry (ICP­MS), high-performance liquid chromatography (HPLC)-ICP-MS, and cold-vapor atomic absorption spectroscopy (CV-AAS). The concrete of the bridge was strongly carbonated and decalcified with an extremely high content of chlorides. The pH of the concrete was in a range from 10.5 to 12.0. Acid soluble components were between 9.9% and 17.6%. Typical sulfate corrosion phases of concrete were not detected. Friedels’ salt was found only at the extremity of an arch. The crown block was corroded to the greatest extent. Various heavy metals were absorbed into the concrete, likely from previous centuries, when environmental protection policy was poor. The applied research methodology can be used on bridges exposed to specific external influences. The acquired knowledge can be useful in the management processes of the bridge infrastructure. It can help in making decisions about decommissioning or extending the life cycle of the bridge. This work should also sensitize researchers and decision-makers to the context of “bridge safety”.


1997 ◽  
Vol 41 (3) ◽  
pp. 504-510 ◽  
Author(s):  
A Severin ◽  
E Severina ◽  
A Tomasz

Subinhibitory concentrations of clavulanate caused premature induction of stationary-phase autolysis, sensitization to lysozyme, and reductions in the MICs of deoxycholate and penicillin for Streptococcus pneumoniae. In the range of clavulanate concentrations producing these effects, this beta-lactam compound was selectively bound to PBP 3. Cell walls isolated from pneumococci grown in the presence of clavulanate showed increased sensitivity to the hydrolytic action of purified pneumococcal autolysin in vitro. High-performance liquid chromatography analysis of the peptidoglycan isolated from the clavulanate-grown cells showed major qualitative and quantitative changes in stem peptide composition, the most striking feature of which was the accumulation of peptide species carrying intact D-alanyl-D-alanine residues at the carboxy termini. The altered biological and biochemical properties of the clavulanate-grown pneumococci appear to be the consequences of suppressed D,D-carboxypeptidase activity.


2009 ◽  
Vol 29 (2) ◽  
pp. 93-101 ◽  
Author(s):  
Amal A El-Bakary ◽  
Sahar A El-Dakrory ◽  
Sohayla M Attalla ◽  
Nawal A Hasanein ◽  
Hala A Malek

Methanol poisoning is a hazardous intoxication characterized by visual impairment and formic acidemia. The therapy for methanol poisoning is alcohol dehydrogenase (ADH) inhibitors to prevent formate accumulation. Ranitidine has been considered to be an inhibitor of both gastric alcohol and hepatic aldehyde dehydrogenase enzymes. This study aimed at testing ranitidine as an antidote for methanol acute toxicity and comparing it with ethanol and 4-methyl pyrazole (4-MP). This study was conducted on 48 Sprague-Dawley rats, divided into 6 groups, with 8 rats in each group (one negative control group [C1], two positive control groups [C2, C3] and three test groups [1, 2 and 3]). C2, C3 and all test groups were exposed to nitrous oxide by inhalation, then, C3 group was given methanol (3 g/kg orally). The three test groups 1, 2 and 3 were given ethanol (0.5 g/kg orally), 4-MP (15 mg/kg intraperitoneally) and ranitidine (30 mg/kg intraperitoneally), respectively, 4 hours after giving methanol. Rats were sacrificed and heparinized, cardiac blood samples were collected for blood pH and bicarbonate. Non-heparinized blood samples were collected for formate levels by high performance liquid chromatography. Eye balls were enucleated for histological examination of the retina. Ranitidine corrected metabolic acidosis (p = .025), decreased formate levels (p = .014) and improved the histological findings in the retina induced by acute methanol toxicity.


2005 ◽  
Vol 95 (2) ◽  
pp. 158-165 ◽  
Author(s):  
A. Pegard ◽  
G. Brizzard ◽  
A. Fazari ◽  
O. Soucaze ◽  
P. Abad ◽  
...  

In the pepper Capsicum annuum CM334, which is used by breeders as a source of resistance to Phytophthora spp. and potyviruses, a resistance gene entirely suppresses reproduction of the root-knot nematode (Meloidogyne spp.). The current study compared the histological responses of this resistant line and a susceptible cultivar to infection with the three most damaging root-knot nematodes: M. arenaria, M. incognita, or M. javanica. Resistance of CM334 to root-knot nematodes was associated with unidentified factors that limited nematode penetration and with post-penetration biochemical responses, including the hypersensitive response, which apparently blocked nematode migration and thereby prevented juvenile development and reproduction. High-performance liquid chromatography analysis suggested that phenolic compounds, especially chlorogenic acid, may be involved in CM334 resistance. The response to infection in the resistant line varied with root-knot nematode species and was correlated with nematode behavior and pathogenicity in the susceptible cultivar: nematode species that quickly reached the vascular cylinder and initiated feeding sites in the susceptible cultivar were quickly recognized in CM334 and stopped in the epidermis or cortex. After comparing our data with those from other resistant pepper lines, we suggest that timing of the resistance response and the mechanism of resistance vary with plant genotype, resistance gene, and root-knot nematode species.


2006 ◽  
Vol 72 (6) ◽  
pp. 3924-3932 ◽  
Author(s):  
Erik Lys�e ◽  
Sonja S. Klemsdal ◽  
Karen R. Bone ◽  
Rasmus J. N. Frandsen ◽  
Thomas Johansen ◽  
...  

ABSTRACT Zearalenones are produced by several Fusarium species and can cause reproductive problems in animals. Some aurofusarin mutants of Fusarium pseudograminearum produce elevated levels of zearalenone (ZON), one of the estrogenic mycotoxins comprising the zearalenones. An analysis of transcripts from polyketide synthase genes identified in the Fusarium graminearum database was carried out for these mutants. PKS4 was the only gene with an enoyl reductase domain that had a higher level of transcription in the aurofusarin mutants than in the wild type. An Agrobacterium tumefaciens-mediated transformation protocol was used to replace the central part of the PKS4 gene with a hygB resistance gene through double homologous recombination in an F. graminearum strain producing a high level of ZON. PCR and Southern analysis of transformants were used to identify isolates with single insertional replacements of PKS4. High-performance liquid chromatography analysis showed that the PKS4 replacement mutant did not produce ZON. Thus, PKS4 encodes an enzyme required for the production of ZON in F. graminearum. Barley root infection studies revealed no alteration in the pathogenicity of the PKS4 mutant compared to the pathogenicity of the wild type. The expression of PKS13, which is located in the same cluster as PKS4, decreased dramatically in the mutant, while transcription of PKS4 was unchanged. This differential expression may indicate that ZON or its derivatives do not regulate expression of PKS4 and that the PKS4-encoded protein or its product stimulates expression of PKS13. Furthermore, both the lack of aurofusarin and ZON influenced the expression of other polyketide synthases, demonstrating that one polyketide can influence the expression of others.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
K. CECCHIN ◽  
A. FAVARETTO ◽  
S.M. SCHEFFER-BASSO ◽  
C.D. BERTOL ◽  
S.O. CHINI

ABSTRACT This study was conducted in order to verify if the phenological stage and the nitrogen fertilization interfere in the allelopathic activity and in the concentration of potentially allelopathic phenolic compounds of tough lovegrass (Eragrostis plana). The assay consisted of a bifactor 3 (0.100 and 200 kg N ha-1) x 2 (harvested in vegetative and reproductive stages), in a split plot design. The N doses constituted the main plot and the phenological stage during the harvest the subplots, resulting in six treatments. The tough lovegrass plants derived from each of the treatments were subjected to allelopathy bioassays, in which aqueous extracts of the aerial parts were applied to lettuce cypselae (Lactuca sativa) and to phytochemicals tests when ethanolic extracts were used, with subsequent partition with ethyl acetate, followed by a high-performance liquid chromatography analysis. There was nitrogen x phenological stage interaction on biological and chemical attributes. The allelopathic extracts were, in descending order of inhibition of germination, those from plants harvested at the vegetative stage and fertilized with 100 kg N and at the flowering stage with 200 kg N, which showed the highest catechin concentrations. The caffeic, ferulic, p-coumaric and vanillic acids were in a higher concentration in flowered and fertilized plants with 0 or 200 kg N. The management of the nitrogen fertilization and the harvesting age influence the allelopathic activity and the phytochemical composition of tough lovegrass.


2016 ◽  
Vol 82 (19) ◽  
pp. 5951-5959 ◽  
Author(s):  
Paul M. D'Agostino ◽  
Vivek S. Javalkote ◽  
Rabia Mazmouz ◽  
Russell Pickford ◽  
Pravin R. Puranik ◽  
...  

ABSTRACTThe mycosporine-like amino acids (MAAs) are a group of small molecules with a diverse ecological distribution among microorganisms. MAAs have a range of physiological functions, including protection against UV radiation, making them important from a biotechnological perspective. In the present study, we identified a putative MAA (mys) gene cluster in two New Zealand isolates ofScytonemacf.crispum(UCFS10 and UCFS15). Homology to “Anabaena-type”mysclusters suggested that this cluster was likely to be involved in shinorine biosynthesis. Surprisingly, high-performance liquid chromatography analysis ofS. cf.crispumcell extracts revealed a complex MAA profile, including shinorine, palythine-serine, and their hexose-bound variants. It was hypothesized that a short-chain dehydrogenase (UCFS15_00405) encoded by a gene adjacent to theS. cf.crispummyscluster was responsible for the conversion of shinorine to palythine-serine. Heterologous expression of MysABCE and UCFS15_00405 inEscherichia coliresulted in the exclusive production of the parent compound shinorine. Taken together, these results suggest that shinorine biosynthesis inS. cf.crispumproceeds via anAnabaena-type mechanism and that the genes responsible for the production of other MAA analogues, including palythine-serine and glycosylated analogues, may be located elsewhere in the genome.IMPORTANCERecently, New Zealand isolates ofS. cf.crispumwere linked to the production of paralytic shellfish toxins for the first time, but no other natural products from this species have been reported. Thus, the species was screened for important natural product biosynthesis. The mycosporine-like amino acids (MAAs) are among the strongest absorbers of UV radiation produced in nature. The identification of novel MAAs is important from a biotechnology perspective, as these molecules are able to be utilized as sunscreens. This study has identified two novel MAAs that have provided several new avenues of future research related to MAA genetics and biosynthesis. Further, we have revealed that the genetic basis of MAA biosynthesis may not be clustered on the genome. The identification of the genes responsible for MAA biosynthesis is vital for future genetic engineering.


Sign in / Sign up

Export Citation Format

Share Document