Current Advances in the Biological Activity of Polysaccharides in Dendrobium with Intriguing Therapeutic Potential

2018 ◽  
Vol 25 (14) ◽  
pp. 1663-1681 ◽  
Author(s):  
Chun-Ting Lee ◽  
Heng-Chun Kuo ◽  
Yung-Hsiang Chen ◽  
Ming-Yen Tsai

The polysaccharides in many plants are attracting worldwide attention because of their biological activities and medical properties, such as anti-viral, anti-oxidative, antichronic inflammation, anti-hypertensive, immunomodulation, and neuron-protective effects, as well as anti-tumor activity. Denodrobium species, a genus of the family orchidaceae, have been used as herbal medicines for hundreds of years in China due to their pharmacological effects. These effects include nourishing the Yin, supplementing the stomach, increasing body fluids, and clearing heat. Recently, numerous researchers have investigated possible active compounds in Denodrobium species, such as lectins, phenanthrenes, alkaloids, trigonopol A, and polysaccharides. Unlike those of other plants, the biological effects of polysaccharides in Dendrobium are a novel research field. In this review, we focus on these novel findings to give readers an overall picture of the intriguing therapeutic potential of polysaccharides in Dendrobium, especially those of the four commonly-used Denodrobium species: D. huoshanense, D. offininale, D. nobile, and D. chrysotoxum.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Meiting Wu ◽  
Lin Ni ◽  
Haixiao Lu ◽  
Huiyou Xu ◽  
Shuangquan Zou ◽  
...  

Cinnamomum is a genus of the family Lauraceae, which has been recognized worldwide as an important genus due to its beneficial uses. A great deal of research on its phytochemistry and pharmacological effects has been conducted. It is noteworthy that terpenoids are the characteristic of Cinnamomum due to the peculiar structures and significant biological effects. For a more in-depth study and the better use of Cinnamomum plants in the future, the chemical structures and biological effects of terpenoids obtained from Cinnamomum were summarized in the present study. To date, a total of 181 terpenoids with various skeletons have been isolated from Cinnamomum. These compounds have been demonstrated to play an important role in immunomodulatory, anti-inflammatory, antimicrobial, antioxidant, and anticancer activities. However, studies on the bioactive components from Cinnamomum plants have only focused on a dozen species. Hence, further studies on the potential pharmacological effects need to be conducted in the future.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2590
Author(s):  
Dong-Kyu Lee ◽  
Seongoh Park ◽  
Nguyen Phuoc Long ◽  
Jung Eun Min ◽  
Hyung Min Kim ◽  
...  

Black ginseng has various pharmacological activities, but only few studies have compared its pharmacological effects with those of red ginseng. We conducted an integrative systematic literature evaluation and developed a non-inferiority test based on the multivariate modeling approach to compare the pharmacological effects of red ginseng and black ginseng. We searched reported studies on the pharmaceutical effects and composition of ginsenosides and assigned numeric scores using nonlinear principal component analysis, based on discretization measures for the included publications. Downstream weighted linear regression models were constructed to study the eight major biological activities that are generally known to be exhibited by red ginseng. Our statistical model, based on available ordinal information gathered from previous literature, helped in comparing the overlapping effects of black ginseng. Black ginseng showed antioxidant effects comparable to those of red ginseng; however, this variant was inferior to red ginseng in enhancing immunity, relieving fatigue, alleviating depression/anxiety, decreasing body fat, and reducing blood pressure. We have showed a cost-efficient method to indirectly evaluate the biological effects of ginseng products using data from published articles. This method can also be used to compare the nutritional and medicinal value of herbal medicines that share similar compositions of bioactive compounds.


2020 ◽  
Vol 06 ◽  
Author(s):  
Faiq H. S. Hussain ◽  
Hawraz Ibrahim M. Amin ◽  
Dinesh kumar Patel ◽  
Omji Porwal

: The family Iridaceae contains 92 genera and more than 1800 species, mostly perennial herbs with underground storage organs called rhizomes (bulbs). Some genera are important in traditional medicines, especially Iris and Gladiolus. The genus Iris belongs to this family and comprises about hundreds species among them, 12 species are found in Iraq. It has been widely used various medicines worldwide especially Iris persica is used in folk medicine in the Kurdistan region of Iraq as an effective treatment against tumours, antibacterial, antifungal and treating inflammation. Earlier finding confirmed that Iris persica and its constituents play role in the scavenging of free radical generation and prevention of disease pathogenesis. Each part of the Iris persica herb has some medicinal property. This review gives a eagle eye view mainly on the biological activities of the Iris persica and some of their compounds isolated, pharmacological actions of the Iris persica extracts and products, and plausible medicinal and therapeutically applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1184
Author(s):  
Armin Mooranian ◽  
Thomas Foster ◽  
Corina M Ionescu ◽  
Daniel Walker ◽  
Melissa Jones ◽  
...  

Introduction: Recent studies in our laboratory have shown that some bile acids, such as chenodeoxycholic acid (CDCA), can exert cellular protective effects when encapsulated with viable β-cells via anti-inflammatory and anti-oxidative stress mechanisms. However, to explore their full potential, formulating such bile acids (that are intrinsically lipophilic) can be challenging, particularly if larger doses are required for optimal pharmacological effects. One promising approach is the development of nano gels. Accordingly, this study aimed to examine biological effects of various concentrations of CDCA using various solubilising nano gel systems on encapsulated β-cells. Methods: Using our established cellular encapsulation system, the Ionic Gelation Vibrational Jet Flow technology, a wide range of CDCA β-cell capsules were produced and examined for morphological, biological, and inflammatory profiles. Results and Conclusion: Capsules’ morphology and topographic characteristics remained similar, regardless of CDCA or nano gel concentrations. The best pharmacological, anti-inflammatory, and cellular respiration, metabolism, and energy production effects were observed at high CDCA and nano gel concentrations, suggesting dose-dependent cellular protective and positive effects of CDCA when incorporated with high loading nano gel.


Author(s):  
Diana Hamdan ◽  
Lisa A. Robinson

Excessive infiltration of immune cells into the kidney is a key feature of acute and chronic kidney diseases. The family of chemokines are key drivers of this process. CX3CL1 (fractalkine) is one of two unique chemokines synthesized as a transmembrane protein which undergoes proteolytic cleavage to generate a soluble species. Through interacting with its cognate receptor, CX3CR1, CX3CL1 was originally shown to act as a conventional chemoattractant in the soluble form, and as an adhesion molecule in the transmembrane form. Since then, other functions of CX3CL1 beyond leukocyte recruitment have been described, including cell survival, immunosurveillance, and cell-mediated cytotoxicity. This review summarizes diverse roles of CX3CL1 in kidney disease and potential uses as a therapeutic target and novel biomarker. As the CX3CL1-CX3CR1 axis has been shown to contribute to both detrimental and protective effects in various kidney diseases, a thorough understanding of how the expression and function of CX3CL1 are regulated is needed to unlock its therapeutic potential.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1155
Author(s):  
Jamile S. da Costa ◽  
Ellen de Nazaré S. da Cruz ◽  
William N. Setzer ◽  
Joyce Kelly do R. da Silva ◽  
José Guilherme S. Maia ◽  
...  

The Eugenia and Syzygium genera include approximately 1000 and 1800 species, respectively, and both belong to the Myrtaceae. Their species present economic and medicinal importance and pharmacological properties. Due to their chemical diversity and biological activity, we are reporting the essential oils of 48 species of these two genera, which grow in South America and found mainly in Brazil. Chemically, a total of 127 oil samples have been described and displayed a higher intraspecific and interspecific diversity for both Eugenia spp. and Syzygium spp., according to the site of collection or seasonality. The main volatile compounds were sesquiterpene hydrocarbons and oxygenated sesquiterpenes, mainly with caryophyllane and germacrane skeletons and monoterpenes of mostly the pinane type. The oils presented many biological activities, especially antimicrobial (antifungal and antibacterial), anticholinesterase, anticancer (breast, gastric, melanoma, prostate), antiprotozoal (Leishmania spp.), antioxidant, acaricidal, antinociceptive and anti-inflammatory. These studies can contribute to the rational and economic exploration of Eugenia and Syzygium species once they have been identified as potent natural and alternative sources to the production of new herbal medicines.


Author(s):  
Hiram Hernández-López ◽  
Christian Jairo Tejada-Rodríguez ◽  
Socorro Leyva-Ramos

Abstract: The therapeutic potential of the benzimidazole nucleus dates back to 1944, being and important heterocycle system due to its presence in a wide range of bioactive compounds such as antiviral, anticancer, antibacterial, and so on, where optimization of substituents in this class of pharmacophore has resulted in many drugs. Its extensive biological activity is due to its physicochemical properties like hydrogen bond donor-acceptor capability,  stacking interactions, coordination bonds with metals as ligands and hydrophobic interactions; properties that allow them to easily bind with a series of biomolecules, including enzymes and nucleic acids, causing a growing interest in these types of molecules. This review aims to present an overview to leading benzimidazole derivatives, as well as to show the importance of the nature and type of substituents at the N1, C2, and C5(6) positions, when they are biologically evaluated, which can lead to obtaining potent drug candidate with significant range of biological activities.


2015 ◽  
Vol 15 (2) ◽  
pp. 86-90
Author(s):  
B Delgermaa ◽  
O Sunjidmaa

This study compared and determined the quantities, types and biological activities of microorganisms in the soil covered and uncovered with straw. By creating straw mulch on the soil, the number of /nitrogen fixation/ useful bacteria has increased 1.3-2.2 times more than in the uncovered field. Also the cellular depleting bacteria around 0.7 million pieces, and the number of fungal pathogen 0.17 million pieces more than in the uncovered version. The soil biological activity has decreased 0.0037-0.0009 kg. hour/ha at the beginning of planting and at the end of harvesting. It depends on the number of bacteria.Mongolian Journal of Agricultural Sciences Vol.15(2) 2015; 86-90


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 27
Author(s):  
Fengjie Li ◽  
Michelle Kelly ◽  
Deniz Tasdemir

Marine sponges are exceptionally prolific sources of natural products for the discovery and development of new drugs. Until now, sponges have contributed around 30% of all natural metabolites isolated from the marine environment. Family Latrunculiidae Topsent, 1922 (class Demospongiae Sollas, 1885, order Poecilosclerida Topsent, 1928) is a small sponge family comprising seven genera. Latrunculid sponges are recognized as the major reservoirs of diverse types of pyrroloiminoquinone-type alkaloids, with a myriad of biological activities, in particular, cytotoxicity, fuelling their exploration for anticancer drug discovery. Almost 100 pyrroloiminoquinone alkaloids and their structurally related compounds have been reported from the family Latrunculiidae. The systematics of latrunculid sponges has had a complex history, however it is now well understood. The pyrroloiminoquinone alkaloids have provided important chemotaxonomic characters for this sponge family. Latrunculid sponges have been reported to contain other types of metabolites, such as peptides (callipeltins), norditerpenes and norsesterpenes (trunculins) and macrolides (latrunculins), however, the sponges containing latrunculins and trunculins have been transferred to other sponge families. This review highlights a comprehensive literature survey spanning from the first chemical investigation of a New Zealand Latrunculia sp. in 1986 until August 2020, focusing on the chemical diversity and biological activities of secondary metabolites reported from the family Latrunculiidae. The biosynthetic (microbial) origin and the taxonomic significance of pyrroloiminoquinone related alkaloids are also discussed.


Author(s):  
Ruaa M. Ibrahim

Eriobotrya japonica Lindl., named as loquat, is a subtropical fruit tree of the family Rosaceae which is well known medical plant originated in  Japan and China. Loquat portions, like leaves, peels and fruits have been shown to possess various health usefulnesses.  In Chinese classical medicine, it is vastly utilized in many illnesses, like gastroenteric disorders, diabetes mellitus, pulmonary inflammatory diseases and chronic bronchitis. Loquat plant contain many active constituents, such as flavonoids, carotenoids, vitamins, polyphenolic compounds, other that have many biological effects like anti-tumor, anti-diabetic, anti-inflammatory, anti-mutagenic, antioxidant, antiviral, antitussive, hepatoprotective and hypolipidemic activity.


Sign in / Sign up

Export Citation Format

Share Document