scholarly journals Chemistry, Chemotaxonomy and Biological Activity of the Latrunculid Sponges (Order Poecilosclerida, Family Latrunculiidae)

Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 27
Author(s):  
Fengjie Li ◽  
Michelle Kelly ◽  
Deniz Tasdemir

Marine sponges are exceptionally prolific sources of natural products for the discovery and development of new drugs. Until now, sponges have contributed around 30% of all natural metabolites isolated from the marine environment. Family Latrunculiidae Topsent, 1922 (class Demospongiae Sollas, 1885, order Poecilosclerida Topsent, 1928) is a small sponge family comprising seven genera. Latrunculid sponges are recognized as the major reservoirs of diverse types of pyrroloiminoquinone-type alkaloids, with a myriad of biological activities, in particular, cytotoxicity, fuelling their exploration for anticancer drug discovery. Almost 100 pyrroloiminoquinone alkaloids and their structurally related compounds have been reported from the family Latrunculiidae. The systematics of latrunculid sponges has had a complex history, however it is now well understood. The pyrroloiminoquinone alkaloids have provided important chemotaxonomic characters for this sponge family. Latrunculid sponges have been reported to contain other types of metabolites, such as peptides (callipeltins), norditerpenes and norsesterpenes (trunculins) and macrolides (latrunculins), however, the sponges containing latrunculins and trunculins have been transferred to other sponge families. This review highlights a comprehensive literature survey spanning from the first chemical investigation of a New Zealand Latrunculia sp. in 1986 until August 2020, focusing on the chemical diversity and biological activities of secondary metabolites reported from the family Latrunculiidae. The biosynthetic (microbial) origin and the taxonomic significance of pyrroloiminoquinone related alkaloids are also discussed.

2018 ◽  
Vol 25 (14) ◽  
pp. 1663-1681 ◽  
Author(s):  
Chun-Ting Lee ◽  
Heng-Chun Kuo ◽  
Yung-Hsiang Chen ◽  
Ming-Yen Tsai

The polysaccharides in many plants are attracting worldwide attention because of their biological activities and medical properties, such as anti-viral, anti-oxidative, antichronic inflammation, anti-hypertensive, immunomodulation, and neuron-protective effects, as well as anti-tumor activity. Denodrobium species, a genus of the family orchidaceae, have been used as herbal medicines for hundreds of years in China due to their pharmacological effects. These effects include nourishing the Yin, supplementing the stomach, increasing body fluids, and clearing heat. Recently, numerous researchers have investigated possible active compounds in Denodrobium species, such as lectins, phenanthrenes, alkaloids, trigonopol A, and polysaccharides. Unlike those of other plants, the biological effects of polysaccharides in Dendrobium are a novel research field. In this review, we focus on these novel findings to give readers an overall picture of the intriguing therapeutic potential of polysaccharides in Dendrobium, especially those of the four commonly-used Denodrobium species: D. huoshanense, D. offininale, D. nobile, and D. chrysotoxum.


2020 ◽  
Vol 20 (5) ◽  
pp. 342-368 ◽  
Author(s):  
Juliana de Oliveira Carneiro Brum ◽  
Tanos Celmar Costa França ◽  
Steven R. LaPlante ◽  
José Daniel Figueroa Villar

Hydrazones and their derivatives are very important compounds in medicinal chemistry due to their reported biological activity for the treatment of several diseases, like Alzheimer’s, cancer, inflammation, and leishmaniasis. However, most of the investigations on hydrazones available in literature today are directed to the synthesis of these molecules with little discussion available on their biological activities. With the purpose of bringing lights into this issue, we performed a revision of the literature and wrote this review based on some of the most current research reports of hydrazones and derivatives, making it clear that the synthesis of these molecules can lead to new drug prototypes. Our goal is to encourage more studies focused on the synthesis and evaluation of new hydrazones, as a contribution to the development of potential new drugs for the treatment of various diseases.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 488
Author(s):  
Afrah E. Mohammed ◽  
Zainab H. Abdul-Hameed ◽  
Modhi O. Alotaibi ◽  
Nahed O. Bawakid ◽  
Tariq R. Sobahi ◽  
...  

By the end of the twentieth century, the interest in natural compounds as probable sources of drugs has declined and was replaced by other strategies such as molecular target-based drug discovery. However, in the recent times, natural compounds regained their position as extremely important source drug leads. Indole-containing compounds are under clinical use which includes vinblastine and vincristine (anticancer), atevirdine (anti-HIV), yohimbine (erectile dysfunction), reserpine (antihypertension), ajmalicine (vascular disorders), ajmaline (anti-arrhythmic), vincamine (vasodilator), etc. Monoterpene Indole Alkaloids (MIAs) deserve the curiosity and attention of researchers due to their chemical diversity and biological activities. These compounds were considered as an impending source of drug-lead. In this review 444 compounds, were identified from six genera belonging to the family Apocynaceae, will be discussed. These genera (Alstonia, Rauvolfia, Kopsia, Ervatamia, and Tabernaemontana, and Rhazya) consist of 400 members and represent 20% of Apocynaceae species. Only 30 (7.5%) species were investigated, whereas the rest are promising to be investigated. Eleven bioactivities, including antibacterial, antifungal, anti-inflammatory and immunosuppressant activities, were reported. Whereas cytotoxic effect represents 47% of the reported activities. Convincingly, the genera selected in this review are a wealthy source for future anticancer drug lead.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 335
Author(s):  
Xia Yan ◽  
Jing Liu ◽  
Xue Leng ◽  
Han Ouyang

Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 92
Author(s):  
Yue Yang ◽  
Ping-Ya He ◽  
Yi Zhang ◽  
Ning Li

There are abundant sources of anticancer drugs in nature that have a broad prospect in anticancer drug discovery. Natural compounds, with biological activities extracted from plants and marine and microbial metabolites, have significant antitumor effects, but their mechanisms are various. In addition to providing energy to cells, mitochondria are involved in processes, such as cell differentiation, cell signaling, and cell apoptosis, and they have the ability to regulate cell growth and cell cycle. Summing up recent data on how natural products regulate mitochondria is valuable for the development of anticancer drugs. This review focuses on natural products that have shown antitumor effects via regulating mitochondria. The search was done in PubMed, Web of Science, and Google Scholar databases, over a 5-year period, between 2015 and 2020, with a keyword search that focused on natural products, natural compounds, phytomedicine, Chinese medicine, antitumor, and mitochondria. Many natural products have been studied to have antitumor effects on different cells and can be further processed into useful drugs to treat cancer. In the process of searching for valuable new drugs, natural products such as terpenoids, flavonoids, saponins, alkaloids, coumarins, and quinones cover the broad space.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 965
Author(s):  
Renan Campos e Silva ◽  
Jamile S. da Costa ◽  
Raphael O. de Figueiredo ◽  
William N. Setzer ◽  
Joyce Kelly R. da Silva ◽  
...  

Psidium (Myrtaceae) comprises approximately 266 species, distributed in tropical and subtropical regions of the world. Psidium taxa have great ecological, economic, and medicinal relevance due to their essential oils’ chemical diversity and biological potential. This review reports 18 Psidium species growing around the world and the chemical and biological properties of their essential oils. Chemically, 110 oil records are reported with significant variability of volatile constituents, according to their seasonality and collection sites. Monoterpenes and sesquiterpenes with acyclic (C10 and C15), p-menthane, pinane, bisabolane, germacrane, caryophyllane, cadinane, and aromadendrane skeleton-types, were the primary constituents. The essential oils showed various biological activities, including antioxidant, antifungal, antibacterial, phytotoxic, larvicidal, anti-inflammatory, and cytotoxic properties. This review contributes to the Psidium species rational and economic exploration as natural sources to produce new drugs.


2021 ◽  
Vol 10 (3) ◽  
pp. 2506-2514

Psidium guajava is a tropical evergreen tree. It belongs to the family Myrtaceae that consists of about 133 genera and approximately 3800 species worldwide. This plant is mainly found in South Africa, North Africa, South America, and Southeast Asia. Psidium guajava is mainly a nutritional plant, but it also shows various biological activities. An array of bioactive constituents, viz; glycosides, terpenoids, tannins, alkaloids, steroids, saponins, amino acids, anthraquinones, proteins, flavonoids, and phenols, etc. have been isolated from Psidium guajava. These phytochemicals are well known for their biological activities, including antibacterial, antioxidant, antifungal, etc. The present work has been performed to gather data about the traditional uses, important phytochemicals, and antibacterial efficiency of Psidium guajava. Many pharmacological studies have demonstrated its antibacterial potential against various important drug resistive pathogens. We invite researchers' attention to carry out detailed antibacterial studies on this valuable plant species to provide reliable knowledge to the patients and discover more novel compounds for the development of new drugs with fewer side effects compared to conventional medicines.


2021 ◽  
Vol 4 (2) ◽  
pp. 47-53
Author(s):  
N. Y. Monka ◽  
◽  
N. E. Stadnytska ◽  
I. R. Buchkevych ◽  
K. O. Kaplia ◽  
...  

Benzoquinone and its reduced form hydroquinone belong to phenolic compounds and are found in living organisms in free form or in glycosides. They are active substances of some medicinal plants and have a pharmacological effect on the human body. Accordingly, their derivatives are important objects for chemical synthesis and development of new drugs. This article presents the findings of the structural design of substances with benzoquinone or hydroquinone fragment and sulfur-containing compound. By use of appropriate on-line programs a predictive screening of the biological activity and cytotoxicity of thiosulfonate derivatives of benzoquinone and hydroquinone has been conducted. It has been found that they have immense methodological potential to be synthesized by substances with a wide range of biological activities and a high value of probable activity, which substantiates the feasibility of conducting experimental studies on their biological activity, particularly anticancer.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1155
Author(s):  
Jamile S. da Costa ◽  
Ellen de Nazaré S. da Cruz ◽  
William N. Setzer ◽  
Joyce Kelly do R. da Silva ◽  
José Guilherme S. Maia ◽  
...  

The Eugenia and Syzygium genera include approximately 1000 and 1800 species, respectively, and both belong to the Myrtaceae. Their species present economic and medicinal importance and pharmacological properties. Due to their chemical diversity and biological activity, we are reporting the essential oils of 48 species of these two genera, which grow in South America and found mainly in Brazil. Chemically, a total of 127 oil samples have been described and displayed a higher intraspecific and interspecific diversity for both Eugenia spp. and Syzygium spp., according to the site of collection or seasonality. The main volatile compounds were sesquiterpene hydrocarbons and oxygenated sesquiterpenes, mainly with caryophyllane and germacrane skeletons and monoterpenes of mostly the pinane type. The oils presented many biological activities, especially antimicrobial (antifungal and antibacterial), anticholinesterase, anticancer (breast, gastric, melanoma, prostate), antiprotozoal (Leishmania spp.), antioxidant, acaricidal, antinociceptive and anti-inflammatory. These studies can contribute to the rational and economic exploration of Eugenia and Syzygium species once they have been identified as potent natural and alternative sources to the production of new herbal medicines.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 115 ◽  
Author(s):  
Amr El-Demerdash ◽  
Atanas G. Atanasov ◽  
Olaf K. Horbanczuk ◽  
Mohamed A. Tammam ◽  
Mamdouh Abdel-Mogib ◽  
...  

Marine natural products (MNPs) continue to be in the spotlight in the global drug discovery endeavor. Currently, more than 30,000 structurally diverse secondary metabolites from marine sources have been isolated, making MNPs a profound, renewable source to investigate novel drug compounds. Marine sponges of the genus Suberea (family: Aplysinellidae) are recognized as producers of bromotyrosine derivatives, which are considered distinct chemotaxonomic markers for the marine sponges belonging to the order Verongida. This class of compounds exhibits structural diversity, ranging from simple monomeric molecules to more complex molecular scaffolds, displaying a myriad of biological and pharmacological potentialities. In this review, a comprehensive literature survey covering the period of 1998–2018, focusing on the chemistry and biological/pharmacological activities of marine natural products from marine sponges of the genus Suberea, with special attention to the biogenesis of the different skeletons of halogenated compounds, is presented.


Sign in / Sign up

Export Citation Format

Share Document