Quaternized Chitosan Nanoparticles in Vaccine Applications

2020 ◽  
Vol 27 (30) ◽  
pp. 4932-4944 ◽  
Author(s):  
Shuang Yu ◽  
Shengnan Hao ◽  
Beini Sun ◽  
Dongying Zhao ◽  
Xingye Yan ◽  
...  

Different natural and synthetic biodegradable polymers have been used in vaccine formulations as adjuvant and delivery system but have faced various limitations. Chitosan is a new delivery system with the potential to improve development of nano vaccines and drugs. However, chitosan is only soluble in acidic solutions of low concentration inorganic acids such as dilute acetic acid and dilute hydrochloric acid and in pure organic solvents, which greatly limits its application. Chemical modification of chitosan is an important way to improve its weak solubility. Quaternized chitosan not only retains the excellent properties of chitosan, but also improves its water solubility for a wider application. Recently, quaternized chitosan nanoparticles have been widely used in biomedical field. This review focuses on some quaternized chitosan nanoparticles, and points out the advantages and research direction of quaternized chitosan nanoparticles. As shown by the applications of quaternized chitosan nanoparticles as adjuvant and delivery carrier in vaccines, quaternized chitosan nanoparticles have promising potential in application for the development of nano vaccines in the future.

Nano LIFE ◽  
2020 ◽  
Vol 10 (04) ◽  
pp. 2040013 ◽  
Author(s):  
Rong Liang ◽  
Yuxuan Wang ◽  
Lina Wu ◽  
Xinjiong Ni ◽  
Cheng Yang

Nanostructured lipid carrier (NLC) is a new colloidal delivery system which can effectively solve the problems of stability and transdermal delivery of active ingredients with poor water solubility and biocompatibility. Coenzyme Q10 (CoQ10), as a lipophilic antioxidant, has poor chemical stability due to unsaturated double bonds in its molecular structure, which limits its addition and application in cosmetics. In this study, CoQ10 NLC was prepared using the mixture of Caprylyl/Capryl Glycoside (APG) and quaternized chitosan (QCS). The particle size of the QCS–APG–NLC was around 250 nm. Compared to NLC stabilized by APG, QCS–APG–NLC has better storage stability under high temperature and light conditions. In vitro transdermal experiment analysis and confocal laser scanning microscopy (CLSM) observation found that QCS modification can effectively increase the penetration amount of CoQ10 in the skin. So, it is suggested that QCS modified APG–NLC can be used as an effective transdermal delivery system for lipophilic active components.


2016 ◽  
Vol 7 ◽  
pp. 1861-1870 ◽  
Author(s):  
Huijuan Zhang ◽  
Fuqiang Wu ◽  
Yazhen Li ◽  
Xiping Yang ◽  
Jiamei Huang ◽  
...  

In addition to its well-known abortifacient effect, mifepristone (MIF) has been used as an anticancer drug for various cancers in many studies with an in-depth understanding of the mechanism of action. However, application of MIF is limited by its poor water solubility and low oral bioavailability. In this work, we developed a drug delivery system based on chitosan nanoparticles (CNs) to improve its bioavailability and anticancer activity. The MIF-loaded chitosan nanoparticles (MCNs) were prepared by convenient ionic gelation techniques between chitosan (Cs) and tripolyphosphate (TPP). The preparation conditions, including Cs concentration, TPP concentration, Cs/MIF mass ratio, and pH value of the TPP solution, were optimized to gain better encapsulation efficiency (EE) and drug loading capacity (DL). MCNs prepared with the optimum conditions resulted in spherical particles with an average size of 200 nm. FTIR and XRD spectra verified that MIF was successfully encapsulated in CNs. The EE and DL of MCNs determined by HPLC were 86.6% and 43.3%, respectively. The in vitro release kinetics demonstrated that MIF was released from CNs in a sustained-release manner. Compared with free MIF, MCNs demonstrated increased anticancer activity in several cancer cell lines. Pharmacokinetic studies in male rats that were orally administered MCNs showed a 3.2-fold increase in the area under the curve from 0 to 24 h compared with free MIF. These results demonstrated that MCNs could be developed as a potential delivery system for MIF to improve its anticancer activity and bioavailability.


Author(s):  
Sunitha M Reddy ◽  
Sravani Baskarla

This article describes current strategies to enhance aqueous solubility and dissolution rate of poor soluble drugs. Most drugs in the market are lipophilic with low or poor water solubility. There are various methods to enhance solubility: co-solvency, particle size reduction, salt formation and Self Nanoemulsifying drug delivery systems, SEDDS is a novel approach to enhance solubility, dissolution rate and bioavailability of drugs. The study involves formulation and evaluation of solid self-Nano emulsifying drug delivery system (S-SNEDDS) to enhance aqueous solubility and dissolution rate. Oral route is the most convenient route for non-invasive administration. S-SNEDDS has more advantages when compared to the liquid self-emulsifying drug delivery system. Excipients were selected depends upon the drug compatibility oils, surfactants and co surfactants were selected to formulate Liquid SNEDDS these formulated liquid self-nano emulsifying drug delivery system converted into solid by the help of porous carriers, Melted binder or with the help of drying process. Conversion process of liquid to solid involves various techniques; they are spray drying; freeze drying and fluid bed coating technique; extrusion, melting granulation technique. Liquid SNEDDS has a high ability to improve dissolution and solubility of drugs but it also has disadvantages like incompatibility, decreased drug loading, shorter shelf life, ease of manufacturing and ability to deliver peptides that are prone to enzymatic hydrolysis.  


2017 ◽  
Vol 41 (3) ◽  
pp. 183-185
Author(s):  
Zhiling Cao ◽  
Qiao Wu ◽  
Jing Cheng ◽  
Dandan Zhu ◽  
Wengqi Teng ◽  
...  

A three-step synthesis from genistein of the water-soluble sodium salt of 7-O-carboxymethyl-genistein is described. Base-catalysed reaction of genistein with t-butyl bromoacetate gave 7-O-(carbo-t-butoxy)methyl-genistein, which was hydrolysed by aqueous acetic acid to 7-O-carboxymethyl-genistein and neutralised (NaHCO3) to give the target compound. The carboxylate group enhanced the water-solubility of genistein more than a thousand-fold and the new derivate will be useful as a candidate compound in pharmacological and clinical chemistry studies of isoflavones.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1604
Author(s):  
Yu Xiao ◽  
Chi-Tang Ho ◽  
Yulian Chen ◽  
Yuanliang Wang ◽  
Zihao Wei ◽  
...  

Genistein is one of major isoflavones derived from soybean products and it is believed to have beneficial effects on human health. However, its low water-solubility and poor oral bioavailability severely hamper its use as a functional food ingredient or for pharmaceutical industry. In this study, zein and zein/carboxymethyl chitosan (CMCS) nanoparticles were prepared to encapsulate genistein using a combined liquid–liquid phase separation method. The physicochemical properties of fabricated nanoparticles were characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that genistein encapsulated with zein nanoparticles significantly improved its water dispersibility, antioxidant activity in the aqueous phase, and photostability against UV light. Moreover, genistein encapsulated in zein nanoparticles showed a sustained release property. Furthermore, it was found that encapsulation efficiency of genistein was significantly enhanced after CMCS coating, and this effect was more pronounced after the complex nanoparticles cross-linked with calcium ions when compared with the use of zein as a single encapsulant. In addition, compared to zein nanoparticles without biopolymer coating, CMCS coating significantly enhanced the thermal and storage stability of the formed nanoparticles, and delayed the release of genistein. A schematic diagram of zein and zein/carboxymethyl chitosan (CMCS) nanoparticles formation mechanism for encapsulation of genistein was proposed. According to the results of the current study, it could be concluded that encapsulation of genistein in zein/CMCS nanoparticles is a promising approach to improve its water dispersibility, antioxidant activity, photostability against UV light and provide controlled release for food/pharmaceutical applications.


2020 ◽  
Vol 998 ◽  
pp. 277-282
Author(s):  
Narissara Kulpreechanan ◽  
Feuangthit N. Sorasitthiyanukarn

Capsaicin (CAP) is a pungent alkaloid of chili peppers that is obtained from chili peppers that has a variety of pharmacological activities and can be used in various areas, such as functional foods, nutritional supplements and medical nutrition. Capsaicin has important anticancer, antioxidant and anti-inflammatory properties that allow to be applied as treatment for several diseases. However, its lack of water solubility, as well as its poor oral bioavailability in biological systems, show limiting factors for its successful application. Recently, the formulation of capsaicin for food and pharmaceutical use is limited. Therefore, the present study emphasized on preparation of capsaicin-loaded chitosan nanoparticles (CAP-CSNPs) and design and optimization of the formulation using Box-Behnken experimental design (BBD) and response surface methodology (RSM). The capsaicin-loaded chitosan nanoparticles were prepared by o/w emulsification and ionotropic gelification. The optimized formulation of capsaicin-loaded chitosan nanoparticles had a chitosan concentration of 0.11 (%w/v), a Tween 80® concentration of 1.55 (%w/v) and a CAP concentration of 1 mg/mL and that it should be stored at 4°C. Box-Behnken experimental design and response surface methodology was found to be a powerful technique for design and optimization of the preparation of capsaicin-loaded chitosan nanoparticles using limited number of experimental runs. Our study demonstrated that capsaicin-loaded chitosan nanoparticles can be potentially utilized as dietary supplements, nutraceuticals and functional foods.


2019 ◽  
Vol 7 (14) ◽  
pp. 2261-2276 ◽  
Author(s):  
Yufei Bian ◽  
Zhiyong Wei ◽  
Zefeng Wang ◽  
Zhu Tu ◽  
Liuchun Zheng ◽  
...  

A facile method of end-functionalization was used to synthesize a series of fluorescent biodegradable polyesters with tailorable physical properties, which can promisingly be applied in the biomedical field as a controllable and traceable drug delivery system, especially for long-term controlled drug release.


Sign in / Sign up

Export Citation Format

Share Document