Host microbiomes in tumor precision medicine: how far are we?

2022 ◽  
Vol 29 ◽  
Author(s):  
Federica D'Amico ◽  
Monica Barone ◽  
Teresa Tavella ◽  
Simone Rampelli ◽  
Patrizia Brigidi ◽  
...  

Abstract: The human gut microbiome has received a crescendo of attention in recent years, due to the countless influences on human pathophysiology, including cancer. Research on cancer and anticancer therapy is constantly looking for new hints to improve the response to therapy while reducing the risk of relapse. In this scenario, the gut microbiome and the plethora of microbial-derived metabolites are considered a new opening in the development of innovative anticancer treatments for a better prognosis. This narrative review summarizes the current knowledge on the role of the gut microbiome in the onset and progression of cancer, as well as in response to chemo-immunotherapy. Recent findings regarding the tumor microbiome and its implications for clinical practice are also commented on. Current microbiome-based intervention strategies (i.e., prebiotics, probiotics, live biotherapeutics and fecal microbiota transplantation) are then discussed, along with key shortcomings, including a lack of long-term safety information in patients who are already severely compromised by standard treatments. The implementation of bioinformatic tools applied to microbiomics and other omics data, such as machine learning, has an enormous potential to push research in the field, enabling the prediction of health risk and therapeutic outcomes, for a truly personalized precision medicine.

2020 ◽  
Vol 8 (10) ◽  
pp. 1486
Author(s):  
Andrea Quagliariello ◽  
Federica Del Chierico ◽  
Sofia Reddel ◽  
Alessandra Russo ◽  
Andrea Onetti Muda ◽  
...  

Fecal microbiota transplantation (FMT) is a promising strategy in the management of inflammatory bowel disease (IBD). The clinical effects of this practice are still largely unknown and unpredictable. In this study, two children affected by mild and moderate ulcerative colitis (UC), were pre- and post-FMT monitored for clinical conditions and gut bacterial ecology. Microbiota profiling relied on receipts’ time-point profiles, donors and control cohorts’ baseline descriptions. After FMT, the improvement of clinical conditions was recorded for both patients. After 12 months, the mild UC patient was in clinical remission, while the moderate UC patient, after 12 weeks, had a clinical worsening. Ecological analyses highlighted an increase in microbiota richness and phylogenetic distance after FMT. This increase was mainly due to Collinsella aerofaciens and Eubacterium biforme, inherited by respective donors. Moreover, a decrease of Proteus and Blautia producta, and the increment of Parabacteroides, Mogibacteriaceae, Bacteroides eggerthi, Bacteroides plebeius, Ruminococcus bromii, and BBacteroidesovatus were associated with remission of the patient’s condition. FMT results in a long-term response in mild UC, while in the moderate form there is probably need for multiple FMT administrations. FMT leads to a decrease in potential pathogens and an increase in microorganisms correlated to remission status.


2017 ◽  
Vol 64 (3) ◽  
pp. 185-193
Author(s):  
Anca Magdalena Munteanu ◽  
◽  
Raluca Cursaru ◽  
Loreta Guja ◽  
Simona Carniciu ◽  
...  

The medical research of the last 1-2 decades allows us to look at the human gut microbiota and microbiome as to a structure that can promote health and sometimes initiate disease. It works like an endocrine organ: releasing specific metabolites, using environmental inputs, e.g. diet, or acting through its structural compounds, that signal human host receptors, to finally contributing to the pathogenesis of several gastrointestinal and non-gastrointestinal diseases. The same commensal microbes were found as shapers of the human host response to drugs (cardiovascular, oncology etc.). New technologies played an important role in these achievements, facilitating analysis of the genetic and metabolic profile of this microbial community. Once the inputs, the pathways and a lot of human host receptors were highlighted, the scientists were encouraged to go further into research, in order to develop new pathogenic therapies, targeting the human gut flora. Dual therapies, evolving these “friend microbes”, are another actual research subjects. This review gives an update on the current knowledge in the area of microbiota disbalances under environmental factors, the contribution of gut microbiota and microbiome to the pathogenesis of obesity, obesity associated metabolic disorders and cardiovascular disease, as well as new perspectives in preventing and treating these diseases, with high prevalence in contemporary, economically developed societies. It brings the latest and most relevant evidences relating to: probiotics, prebiotics, polyphenols and fecal microbiota transplantation, dietary nutrient manipulation, microbial as well as human host enzyme manipulation, shaping human responses to currently used drugs, manipulating the gut microbiome by horizontal gene transfer.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 997 ◽  
Author(s):  
Derek M. Lin ◽  
Henry C. Lin

Bacteriophages are the most prominent members of the gut microbiome, outnumbering their bacterial hosts by a factor of 10. Phages are bacteria-specific viruses that are gaining attention as highly influential regulators of the gut bacterial community. Dysregulation of the gut bacterial community contributes to dysbiosis, a microbiome disorder characterized by compositional and functional changes that contribute to disease. A role for phages in gut microbiome dysbiosis is emerging with evidence that the gut phage community is altered in dysbiosis-associated disorders such as colorectal cancer and inflammatory bowel disease. Several recent studies have linked successful fecal microbiota transplantation to uptake of the donor’s gut phage community, offering some insight into why some recipients respond to treatment whereas others do not. Here, we review the literature supporting a role for phages in mediating the gut bacterial community, giving special attention to Western diet dysbiosis as a case study to demonstrate a theoretical phage-based mechanism for the establishment and maintenance of dysbiosis.


Author(s):  
Paulina Żebrowska ◽  
Izabela Łaczmańska ◽  
Łukasz Łaczmański

Research on the use of fecal microbiota transplantation (FMT) in the treatment of disorders related to digestive system ailments in children with autism spectrum disorders (ASDs) is a new attempt in a therapeutic approach. There are very little scientific evidences available on this emerging alternative method. However, it appears to be interesting not only because of its primary outcome, relieving the gastrointestinal (GI) symptoms, but also secondary therapeutic effect of alleviating autistic behavioral symptoms. FMT seems to be also promising method in the treatment of another group of pediatric patients, children with inflammatory bowel disease (IBD). The aim of this study is to discuss the potential use of FMT and modified protocols (MTT, microbiota transfer therapy) in the treatment of GI disorders in ASD children supported by reports on another disease, IBD concerning pediatric patients. Due to the few reports of the use of FMT in the treatment of children, these two patients groups were selected, although suffering from distant health conditions: neurodevelopmental disorder and gastrointestinal tract diseases, because of the the fact that they seem related in aspects of the presence of GI symptoms, disturbed intestinal microbiota, unexplained etiology of the condition and age range of patients. Although the outcomes for all are promising, this type of therapy is still an under-researched topic, studies in the group of pediatric patients are sparse, also there is a high risk of transmission of infectious and noninfectious elements during the procedure and no long-term effects on global health are known. For those reasons all obtained results should be taken with a great caution. However, in the context of future therapeutic directions for GI observed in neurodevelopmental disorders and neurodegenerative diseases, the topic seems worthy of attention.


2019 ◽  
Author(s):  
Min Wang ◽  
William Kwame Amakye ◽  
Jianing Cao ◽  
Congcong Gong ◽  
Xiaoyu Sun ◽  
...  

Abstract Background: Dysbiosis of gut microbiota is associated with the progression of beta-amyloid (Aβ) pathology in Alzheimer’s disease (AD). We aimed to identify uniform Aβ-responsible gut microbiota status as possible guideline for gut microbiota manipulation and the prediction of outcomes of microbiota targeted treatments. Six months old APP/PS1 mice from the same genetic background, housing and feeding conditions were then daily gavage with Metformin, peptides WN5 or PW5 to manipulate the gut microbiota for 12 weeks. Aβ pathology and gut microbiota were then explored and compared. Results: Fecal microbiota transplantation (FMT) from a 16 month old APP/PS1 mouse reconstituted the gut microbiota towards the donor and increased Aβ pathology in APP/PS1 mouse model. Metformin, peptides WN5 and PW5 all attenuated Aβ-plaque formation in APP/PS1 mouse model but each was associated with distinct gut microbiota status. No uniform gut microbiota pattern associated with Aβ pathology was found among different gut microbiota-targeted treatments. Conclusion: We found no uniform gut microbiota status associated with Aβ pathology suggesting gut microbiota status is not a suitable biomarker for AD diagnosis and treatment predictions. Alteration of gut microbiota in itself may not be sufficiently directly related to functional outcomes and might only be a shadow of deeper molecular mechanisms not fully understood. The findings here strongly suggested that the significance of gut microbiota alteration in disease pathology and treatment may have so far been over claimed and that interpretation of gut microbiota data should be done with utmost caution.


2020 ◽  
Vol 158 (6) ◽  
pp. S-981
Author(s):  
Craig Haifer ◽  
Sudarshan Paramsothy ◽  
Thomas J. Borody ◽  
Annabel Clancy ◽  
Harriet Kingston-Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document