Recent Advances in Theranostic Applications of Nanomaterials in Cancer

2021 ◽  
Vol 27 ◽  
Author(s):  
Faraha Ahmed ◽  
Mohammad Ahmed Khan ◽  
Nafis Haider ◽  
Mohammad Zaki Ahmad ◽  
Javed Ahmad

: Early detection and accurate monitoring are two critical factors affecting the outcome of anticancer therapy. However, both these factors are affected by the limitations of conventional approaches of diagnosis and treatment. Nanomedicine has progressively offered a scientific solution in improved delivery and better diagnosis of various cancers, thus providing a targeted treatment approach. With the advances in the field, simultaneous delivery and diagnosis are becoming a reality. The present manuscript discusses various drug delivery challenges, provides the scope for theranostic nanomaterials in the diagnosis and treatment of cancer. The clinical and translational potential of theranostic nanomedicine and the future directions for further research are also presented in the manuscript.

2019 ◽  
Vol 26 (8) ◽  
pp. 1366-1376 ◽  
Author(s):  
Fangyuan Li ◽  
Zeyu Liang ◽  
Daishun Ling

Intelligent polymeric nanogels, with the rationally designed stimuli-responsive drug delivery and controlled drug release, have attracted considerable attention as an ideal nanoplatform for activatable therapy. On the other hand, functional inorganic nanomaterials are widely used as medical imaging agents due to their unique magnetic or optical properties. The construction of stimuli-responsive polymeric nanogels incorporating with functional inorganic nanomaterials inherits the excellent properties of both polymers and inorganic nanomaterials, consequently, the resulted organic-inorganic hybrid nanogels naturally exhibit stimuli-responsive multi-functionalities for both imaging and therapy. In this review, we summarize the recent advances of stimuli-responsive organic-inorganic hybrid nanogels. Firstly, we discuss the physical and chemical methods thus far developed for the integration of polymeric nanogels and inorganic nanomaterials, and then we show the typical examples of activatable theranostic applications using organic-inorganic hybrid nanogels. In the end, the existing challenges and future directions are briefly discussed.


2020 ◽  
Vol 26 (36) ◽  
pp. 4601-4614
Author(s):  
Taha Umair Wani ◽  
Roohi Mohi-ud-Din ◽  
Asmat Majeed ◽  
Shabnam Kawoosa ◽  
Faheem Hyder Pottoo

Transdermal route has been an ever sought-after means of drug administration, regarded as being the most convenient and patient compliant. However, skin poses a great barrier to the entry of the external particles including bacteria, viruses, allergens, and drugs as well (mostly hydrophilic or high molecular weight drugs), consequent to its complex structure and composition. Among the various means of enhancing drug permeation through the skin, e.g. chemical permeation enhancers, electroporation, thermophoresis, etc. drug delivery through nanoparticles has been of great interest. Current literature reports a vast number of nanoparticles that have been implicated for drug delivery through the skin. However, a precise account of critical factors involved in drug delivery and mechanisms concerning the permeation of nanoparticles through the skin is necessary. The purpose of this review is to enumerate the factors crucial in governing the prospect of drug delivery through skin and classify the skin permeation mechanisms of nanoparticles. Among the various mechanisms discussed are the ones governed by principles of kinetics, osmotic gradient, adhesion, hydration, diffusion, occlusion, electrostatic interaction, thermodynamics, etc. Among the most common factors affecting skin permeation of nanoparticles that are discussed include size, shape, surface charge density, composition of nanoparticles, mechanical stress, pH, etc.


2019 ◽  
Vol 26 (8) ◽  
pp. 1311-1327 ◽  
Author(s):  
Pala Rajasekharreddy ◽  
Chao Huang ◽  
Siddhardha Busi ◽  
Jobina Rajkumari ◽  
Ming-Hong Tai ◽  
...  

With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.


2020 ◽  
Vol 27 (21) ◽  
pp. 3534-3554 ◽  
Author(s):  
Fan Jiang ◽  
Yunqi Zhu ◽  
Changyang Gong ◽  
Xin Wei

Atherosclerosis is the leading inducement of cardiovascular diseases, which ranks the first cause of global deaths. It is an arterial disease associated with dyslipidemia and changes in the composition of the vascular wall. Besides invasive surgical strategy, the current conservative clinical treatment for atherosclerosis falls into two categories, lipid regulating-based therapy and antiinflammatory therapy. However, the existing strategies based on conventional drug delivery systems have shown limited efficacy against disease development and plenty of side effects. Nanomedicine has great potential in the development of targeted therapy, controlled drug delivery and release, the design of novel specific drugs and diagnostic modalities, and biocompatible scaffolds with multifunctional characteristics, which has led to an evolution in the diagnosis and treatment of atherosclerosis. This paper will focus on the latest nanomedicine strategies for atherosclerosis diagnosis and treatment as well as discussing the potential therapeutic targets during atherosclerosis progress, which could form the basis of development of novel nanoplatform against atherosclerosis.


2020 ◽  
Vol 20 (11) ◽  
pp. 1288-1299
Author(s):  
Paromita Kundu ◽  
Deepika Singh ◽  
Abhalaxmi Singh ◽  
Sanjeeb K. Sahoo

The panorama of cancer treatment has taken a considerable leap over the last decade with the advancement in the upcoming novel therapies combined with modern diagnostics. Nanotheranostics is an emerging science that holds tremendous potential as a contrivance by integrating therapy and imaging in a single probe for cancer diagnosis and treatment thus offering the advantage like tumor-specific drug delivery and at the same time reduced side effects to normal tissues. The recent surge in nanomedicine research has also paved the way for multimodal theranostic nanoprobe towards personalized therapy through interaction with a specific biological system. This review presents an overview of the nano theranostics approach in cancer management and a series of different nanomaterials used in theranostics and the possible challenges with future directions.


2017 ◽  
Vol 6 (7) ◽  
pp. 5426 ◽  
Author(s):  
Hiren J. Patel ◽  
Vaishnavi P. Parikh

The pharmaceutical industry has faced several marked challenges in order to bring new chemical entities (NCEs) into the market over the past few decades. Various novel drug delivery approaches have been used as a part of life cycle management from which Osmotic drug delivery systems look the most promising one. After discussing the history of osmotic pump development, this article looks at the principles, advantages and disadvantages of osmotic drug delivery systems. Then, the basic components of osmotic pump and factors affecting the design of oral osmotic drug delivery systems are discussed in detail. In the later part of the manuscript, various types of osmotic pumps available in the market and evaluation methods for osmotic drug delivery systems are discussed in detail.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2380
Author(s):  
Diedie Li ◽  
Chengzhi Gao ◽  
Meiyan Kuang ◽  
Minhao Xu ◽  
Ben Wang ◽  
...  

RNA interference (RNAi) can mediate gene-silencing by knocking down the expression of a target gene via cellular machinery with much higher efficiency in contrast to other antisense-based approaches which represents an emerging therapeutic strategy for combating cancer. Distinct characters of nanoparticles, such as distinctive size, are fundamental for the efficient delivery of RNAi therapeutics, allowing for higher targeting and safety. In this review, we present the mechanism of RNAi and briefly describe the hurdles and concerns of RNAi as a cancer treatment approach in systemic delivery. Furthermore, the current nanovectors for effective tumor delivery of RNAi therapeutics are classified, and the characteristics of different nanocarriers are summarized.


2017 ◽  
Vol 1 (suppl_1) ◽  
pp. 1202-1202
Author(s):  
Y. Park ◽  
D. Son ◽  
K. Park ◽  
E. Park ◽  
Y. Choi

Sign in / Sign up

Export Citation Format

Share Document