Cytotoxicity and Toxicological Studies of Artocarpus altilis Extracts, Inducing Apoptosis and Cell Cycle Arrest via CASPASE-3 and CASPASE-8 Pathways Against Human Breast MCF-7 Cells

Author(s):  
Tara Jalal ◽  
Hatim Abdullah Natto ◽  
Ridhwan Abdul Wahab

: In recent biomedical research, the area of cancer and infectious diseases has a leading position in the utilization of medicinal plants as a source of drug discovery. Malaysia has a diversity and a large number of underutilized fruits that are rich in phenolic compounds. Artoarpus altilis consider an underutilized fruit that is rich in phenolic compounds. Methanol extracts of A. altilis have been previously found to contain a high content of antioxidant phytochemicals. The purpose of the study was to evaluate the cytotoxicity and toxicological effect of methanol fruit extracts against MCF-7 cells. To determine the least concentration that might kill or suppress the growth of the cancer cells was in a concentration-dependent manner approach. The variation in the cytotoxic activity among the extracts was indicated by determining the IC50 of each extract against cells at 72 h. The IC50 of the samples was measured using a trypan blue exclusion assay. The methanol extract of the pulp part showed the least inhibition concentration of 15.40±0.91 μg/mL on MCF-7 cells. In the study, the molecular mechanism of methanol extracts-induced apoptosis and cell cycle arrested in human cancer cells were investigated in a time-dependent-manners approach by using flow cytometry. The treated cells were stained with nexin to detect early and late apoptosis and with propidium iodide (PI) for cell cycle arrest associated with the DNA fragmentation, various cell arrests occurred at G1/S, S, and G2/M phases. Lastly, the gene expression analysis by (RT-qPCR) method was carried out by analyzing the expression of the gene of interest for the quantification of mRNA levels. Results after cells treated with IC50 were revealed by upregulating anti-apoptotic genes/downregulated of pro-apoptotic BCL-2 gene expressions were triggered the treated cells into CASPASE-3, intrinsic and extrinsic pathways. These findings suggest that the methanol extracts of three parts of A. altilis fruit have potential anticancer activity against MCF-7 cells mainly the pulp part of the fruit.

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3043
Author(s):  
Ahmed Elwakeel ◽  
Anissa Nofita Sari ◽  
Jaspreet Kaur Dhanjal ◽  
Hazna Noor Meidinna ◽  
Durai Sundar ◽  
...  

We previously performed a drug screening to identify a potential inhibitor of mortalin–p53 interaction. In four rounds of screenings based on the shift in mortalin immunostaining pattern from perinuclear to pan-cytoplasmic and nuclear enrichment of p53, we had identified MortaparibPlus (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole) as a novel synthetic small molecule. In order to validate its activity and mechanism of action, we recruited Luminal-A breast cancer cells, MCF-7 (p53wild type) and T47D (p53L194F) and performed extensive biochemical and immunocytochemical analyses. Molecular analyses revealed that MortaparibPlus is capable of abrogating mortalin–p53 interaction in both MCF-7 and T47D cells. Intriguingly, upregulation of transcriptional activation function of p53 (as marked by upregulation of the p53 effector gene—p21WAF1—responsible for cell cycle arrest and apoptosis) was recorded only in MortaparibPlus-treated MCF-7 cells. On the other hand, MortaparibPlus-treated T47D cells exhibited hyperactivation of PARP1 (accumulation of PAR polymer and decrease in ATP levels) as a possible non-p53 tumor suppression program. However, these cells did not show full signs of either apoptosis or PAR-Thanatos. Molecular analyses attributed such a response to the inability of MortaparibPlus to disrupt the AIF–mortalin complexes; hence, AIF did not translocate to the nucleus to induce chromatinolysis and DNA degradation. These data suggested that the cancer cells possessing enriched levels of such complexes may not respond to MortaparibPlus. Taken together, we report the multimodal anticancer potential of MortaparibPlus that warrants further attention in laboratory and clinical studies.


2021 ◽  
Vol 19 (1) ◽  
pp. 119-127
Author(s):  
Ibrahim O. Barnawi ◽  
Fahd A. Nasr ◽  
Omar M. Noman ◽  
Ali S. Alqahtani ◽  
Mohammed Al-zharani ◽  
...  

Abstract Different phytochemicals from various plant species exhibit promising medicinal properties against cancer. Juniperus phoenicea is a plant species that has been found to present medicinal properties. Herein, crude extract and fractions of J. phoenicea were examined to determine its anticancer properties against several cancer cells. The active fraction was chosen to assess its activity on cell cycle progression and apoptosis induction by annexin and propidium iodide (PI) biomarkers. Further, phytochemical screening for possible contents of active fraction using gas chromatography–mass spectrometry (GC-MS) analysis was conducted. It was demonstrated that cell proliferation was suppressed, and the MCF-7 cell line was the most sensitive to J. phoenicea chloroform fraction (JPCF), with the IC50 values of 24.5 μg/mL. The anti-proliferation activity of JPCF in MCF-7 cells was linked to the aggregation of cells in the G1 phase, increases in early and late apoptosis as well as necrotic cell death. Contents analysis of JPCF using GC-MS analysis identified 3-methyl-5-(2′,6′,6′-trimethylcyclohex-1′-enyl)-1-penten-3-ol (16.5%), methyl 8-oxooctanoate (15.61%), cubenol (13.48%), and 7-oxabicyclo [2.2.1] heptane (12.14%) as major constituents. Our present study provides clear evidence that J. phoenicea can inhibit cell proliferation, trigger cell cycle arrest, and induce apoptosis in tested cancer cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Song-yang Xi ◽  
Yu-hao Teng ◽  
Yan Chen ◽  
Jie-ping Li ◽  
Ying-ying Zhang ◽  
...  

Jianpi Huayu Decoction (JHD), a Chinese medicine formula, is a typical prescription against multiple tumors in the clinical treatment, which can raise quality of life and decrease complications. The aim of this study is to assess the efficacy of JHD against human colorectal carcinoma cells (SW480) and explore its mechanism. MTT assay showed that JHD decreased the cellular viability of SW480 cells in dose-dependent and time-dependent manner. Flow cytometry analysis revealed that JHD induced G0/G1-phase cell cycle arrest in SW480 cells and had a strong apoptosis-inducing effect on SW480 cells. Meanwhile it enhanced the expression of p27, cleaved PARP, cleaved caspase-3, and Bax and decreased the levels of PARP, caspase-3, Bcl-2, CDK2, CDK4, CDK6, cyclin D1, cyclin D2, cyclin D3, and cyclin E1, which was evidenced by RT-qPCR and Western blot analysis. In conclusion, these results indicated that JHD inhibited proliferation in SW480 cells by inducing G0/G1-phase cell cycle arrest and apoptosis, providing a practicaltherapeutic strategy against colorectal cancer.


2016 ◽  
Vol 44 (07) ◽  
pp. 1473-1490 ◽  
Author(s):  
Wipada Duangprompo ◽  
Kalaya Aree ◽  
Arunporn Itharat ◽  
Pintusorn Hansakul

5,6-dihydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene (HMP) is an active compound isolated from the rhizome extracts of Dioscorea membranacea Pierre, a Thai medicinal plant. This study aimed to investigate the growth-inhibitory and apoptosis-inducing effects of HMP in human lung cancer A549 cells. The antiproliferative and cytotoxic effects of HMP were analyzed by a Sulforhodamine B assay. Cell division, cell cycle distribution and membrane asymmetry changes were each performed with different fluorescent dyes and then analyzed by flow cytometry. Real-time PCR and immunoblotting were used to detect cell cycle- and apoptosis-related mRNA levels and proteins, respectively. The nuclear morphology of the cells stained with DAPI and DNA fragmentation were detected by fluorescence microscopy and gel electrophoresis, respectively. The results showed that HMP exerted strong antiproliferative and cytotoxic activities in A549 cells with the highest selectivity index. It halted the cell cycle in [Formula: see text]/M phase via down-regulation of the expression levels of regulatory proteins Cdc25C, Cdk1 and cyclinB1. In addition, HMP induced early apoptotic cells with externalized phosphatidylserine and subsequent apoptotic cells in sub-[Formula: see text] phase. HMP increased caspase-3 activity and levels of the cleaved (active) form of caspase-3 whose actions were supported by the cleavage of its target PARP, nuclear condensation and DNA apoptotic ladder. Moreover, HMP significantly increased the mRNA and protein levels of proapoptotic Bax as well as promoted subsequent caspase-9 activation and BID cleavage, indicating HMP-induced apoptosis via both intrinsic and extrinsic pathways. These data support, for the first time, the potential role of HMP as a cell-cycle arrest and apoptosis-inducing agent for lung cancer treatment.


Molecules ◽  
2017 ◽  
Vol 22 (3) ◽  
pp. 472 ◽  
Author(s):  
Jing-Ru Weng ◽  
Li-Yuan Bai ◽  
Wei-Yu Lin ◽  
Chang-Fang Chiu ◽  
Yu-Chang Chen ◽  
...  

2009 ◽  
Vol 186 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Sunisa Sangjun ◽  
Esther de Jong ◽  
Sandra Nijmeijer ◽  
Thumnoon Mutarapat ◽  
Somsak Ruchirawat ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Sooyeon Kang ◽  
Hyo In Kim ◽  
Yu-Jeong Choi ◽  
Seul Ki Lee ◽  
Ji Hye Kim ◽  
...  

Dysregulated lipid metabolism is a prominent feature of prostate cancers (PCas); several enzymes involved in lipid accumulation are highly expressed. Here, we elucidated efficacy of TJ001, a traditional herbal decoction, in inhibiting de novo lipogenesis. TJ001 had significant cytotoxicity against DU145 but not PC3 and LNCaP cells and, similarly, TJ001 markedly AMPK phosphorylation only in DU145 cells. This was accompanied by the downregulation of phosphorylated-acetyl coenzyme A carboxylase (ACC) expression and sterol regulatory element-binding protein 1 (SREBP1) proteolytic cleavage, thereby inhibiting its role as a transcription factor to induce lipid biosynthesis. When Oil Red O staining was performed, it is reflected in the reduction of lipid droplets (LDs). TJ001 also induced G1/S cell cycle arrest via a cell cycle inhibitor (CKI) p21WAF1/CIP1 upregulation. Although p53 proteins remained unchanged, both cyclin E and cyclin D1 were decreased. Moreover, TJ001 suppressed the mammalian target of rapamycin (mTOR) signaling pathway. Generally, the prolonged G1/S phase arrest accompanies apoptosis, but TJ001 failed to work as a trigger apoptosis in DU145 cells. We showed that mutant p53 proteins were required for the survival of DU145 cells. In presence of TJ001, inhibition of endogenous mutant p53 by RNAi led to cell viability reduction and induction of the p-AMPK/AMPK ratio. In addition, it induced apoptotic cell death in DU145 cells. At the cellular level, induction of PARP, caspase-3, and caspase-9 cleavages was observed, and caspase-3 activity was increased in the p53 knockdown cells treated with TJ001. Taken together, we demonstrated that TJ001 inhibited cell growth in DU145 prostate cancer cells as indicated by blocking lipogenesis and induction in G1/S cell cycle arrest. In addition, we may provide an evidence that mutant p53 protein has potential role as an oncogenic action in DU145 cells. Collectively, the combination of mutant p53 targeting and TJ001 treatment resulted in decreased cell growth in DU145 cells.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1043 ◽  
Author(s):  
Ho Lee ◽  
Venu Venkatarame Gowda Saralamma ◽  
Seong Kim ◽  
Sang Ha ◽  
Suchismita Raha ◽  
...  

Pectolinarigenin (PEC), a natural flavonoid present in Cirsium chanroenicum and in some species of Citrus fruits, has various pharmacological benefits such as anti-inflammatory and anti-cancer activities. In the present study, we investigated the anti-cancer mechanism of PEC induced cell death caused by autophagy and apoptosis in AGS and MKN28 human gastric cancer cells. The PEC treatment significantly inhibited the AGS and MKN28 cell growth in a dose-dependent manner. Further, PEC significantly elevated sub-G1 phase in AGS cells and G2/M phase cell cycle arrest in both AGS and MKN28 cells. Apoptosis was confirmed by Annexin V and Hoechst 33342 fluorescent staining. Moreover, Immunoblotting results revealed that PEC treatment down-regulated the inhibitor of apoptosis protein (IAP) family protein XIAP that leads to the activation of caspase-3 thereby cleavage of PARP (poly-ADP-ribose polymerase) in both AGS and MKN28 cells in a dose-dependent manner. The autophagy-inducing effect was indicated by the increased formation of acidic vesicular organelles (AVOs) and increased protein levels of LC3-II conversion in both AGS and MKN28 cells. PEC shows the down regulation of PI3K/AKT/mTOR pathway which is a major regulator of autophagic and apoptotic cell death in cancer cells that leads to the down-regulation of p-4EBP1, p-p70S6K, and p-eIF4E in PEC treated cells when compared with the untreated cells. In conclusion, PEC treatment might have anti-cancer effect by down-regulation of PI3K/AKT/mTOR pathway leading to G2/M phase cell cycle arrest, autophagic and apoptotic cell death in human gastric cancer cells. Further studies of PEC treatment can support to develop as a potential alternative therapeutic agent for human gastric carcinoma.


Sign in / Sign up

Export Citation Format

Share Document