The Physiologic Activity and Mechanism of Quercetin-Like Natural Plant Flavonoids

2020 ◽  
Vol 21 (8) ◽  
pp. 654-658 ◽  
Author(s):  
Wujun Chen ◽  
Shuai Wang ◽  
Yudong Wu ◽  
Xin Shen ◽  
Shutan Xu ◽  
...  

The term “vitamin P” is an old but interesting concept. Most substances in this category belong to the family of flavonoids. “Vitamin P” has also been used to define the activity of some flavonoids, including quercetin, myricetin, and rutin. According to experimental studies, the “quercetin-like natural plant flavonoids” are beneficial to the body due to their various physiological and pharmacological activities in large doses (5 μM in vitro, 50 mg/kg in mice and 100 mg/kg in rats). The physiologically achievable concentration is 10 to 100 nM, which is quite high and hard to achieve from a normal diet. Thus, the physiologic activity and mechanism of "vitamin P" are still not clear. It should be noted that the quercetin-like natural plant flavonoids are physiological co-factors of cyclooxygenases (COXs), which are the rate-limiting key enzymes of prostaglandins. These quercetin-like natural plant flavonoids can strongly stimulate prostaglandin levels at lower doses (10 nM in vitro and in 0.1 mg/kg in vivo in rats). Although these "vitamin P" substances are not original substances in the body, their physiological functions affect the body. This review is focused on the most compelling evidence regarding the physiologic role and mechanism of quercetin-like natural plant flavonoids, which may be useful in understanding the physiological functions of "vitamin P", with the goal of focusing on the role of flavonoids in human physiological health.

2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
E. J. Sánchez-Barceló ◽  
M. D. Mediavilla ◽  
D. X. Tan ◽  
R. J. Reiter

The objective of this paper was to analyze the data supporting the possible role of melatonin on bone metabolism and its repercussion in the etiology and treatment of bone pathologies such as the osteoporosis and the adolescent idiopathic scoliosis (AIS). Melatonin may prevent bone degradation and promote bone formation through mechanisms involving both melatonin receptor-mediated and receptor-independent actions. The three principal mechanisms of melatonin effects on bone function could be: (a) the promotion of the osteoblast differentiation and activity; (b) an increase in the osteoprotegerin expression by osteoblasts, thereby preventing the differentiation of osteoclasts; (c) scavenging of free radicals generated by osteoclast activity and responsible for bone resorption. A variety of in vitro and in vivo experimental studies, although with some controversial results, point toward a possible role of melatonin deficits in the etiology of osteoporosis and AIS and open a new field related to the possible therapeutic use of melatonin in these bone diseases.


2021 ◽  
Author(s):  
Zhou-Tong Dai ◽  
Yuan Xiang ◽  
Xing-Hua Liao

Abstract Background Uterine Corpus Endometrial Cancer (UCEC) is one of the three common malignant tumors of the female reproductive tract. According to reports, the cure rate of early UCEC can reach 95%. Therefore, the development of prognostic markers will help UCEC patients to find the disease earlier and develop treatment earlier. The ALDH family was first discovered to be the essential gene of the ethanol metabolism pathway in the body. Recent studies have shown that ALDH can participate in the regulation of cancer. Methods We used the gene profile data of 33 cancers in the TCGA database to analyze the expression and survival of the ALDH family. GO, KEGG, PPI multiple functional analysis was used to predict the regulatory role of ALDH family in cancer. In addition, using CCK-8, colony formation, nude mouse tumor formation and other methods, the in vitro function of UCEC cancer cell lines was tested to further confirm the key role of ALDH2 expression in the proliferation of UCEC cell lines. Finally, Lasso and Cox regression methods were used to establish an overall survival prognosis model based on ALDH2 expression. Result In our research, we explored the expression of ALDH family in 33 cancers. It was found that ALDH2 was abnormally expressed in UCEC. Besides, in vivo and in vitro experiments were conducted to explore the effect of ALDH2 expression on the proliferation of UCEC cell lines. Meanwhile, the change of its expression is not due to gene mutations, but is regulated by miR-135-3p. At the same time, the impact of ALDH2 changes on the survival of UCEC patients is deeply discussed. Finally, a nomogram for predicting survival was constructed, with a C-index of 0.798 and AUC of 0.764. Conclusion This study suggests that ALDH2 may play a crucial role in UCEC progression and has the potential as a prognostic biomarker of UCEC.


2020 ◽  
Vol 21 (22) ◽  
pp. 8630
Author(s):  
Filippo Sean Giorgi ◽  
Francesca Biagioni ◽  
Alessandro Galgani ◽  
Nicola Pavese ◽  
Gloria Lazzeri ◽  
...  

Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer’s disease (AD) and in Parkinson’s disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients.


2003 ◽  
Vol 31 (02) ◽  
pp. 213-223
Author(s):  
H. G. Choi ◽  
D. H. Kwak ◽  
J. Y. Kim ◽  
Y. J. Choi ◽  
B. S. Kil ◽  
...  

It has been generally accepted that Hwangryunjihwang-tang (H-tang) is a useful prescription for treating polydipsia and to prevent obesity induced by a high-fat diet. The aim of this study was to clarify whether H-tang improved reproductive dysfunction caused by obesity in mice. Mice were fed a high density protein and lipid diet for 4 weeks, followed by administration of H-tang at 480 mg/kg body weight per day for 4 days. Thereafter, changes of body weight, ovulation rate, in vitro and in vivo fertilization, embryonic development and implantation rate were measured. H-tang markedly reduced the body weight of obese mice fed a high-fat diet, but not mice fed a normal diet. H-tang significantly improved ovulation rates, in vitro and in vivo fertilization rates and embryonic development. These results indicate pharmacological reversal of reproductive dysfunction caused by obesity, perhaps by adjusting internal secretions and metabolic functions.


Author(s):  
Marianna Kapetanou ◽  
Tobias Nespital ◽  
Luke S. Tain ◽  
Andre Pahl ◽  
Linda Partridge ◽  
...  

Proteostasis collapses during aging resulting, among other things, in the accumulation of damaged and aggregated proteins. The proteasome is the main cellular proteolytic system and plays a fundamental role in the maintenance of protein homeostasis. Our previous work has demonstrated that senescence and aging are related to a decline in proteasome content and activities, while its activation extends lifespan in vitro and in vivo in various species. However, the mechanisms underlying this age-related decline of proteasome function and the down-regulation in expression of its subunits remain largely unclear. Here, we demonstrate that the Forkhead box-O1 (FoxO1) transcription factor directly regulates the expression of a 20S proteasome catalytic subunit and, hence, proteasome activity. Specifically, we demonstrate that knockout of FoxO1, but not of FoxO3, in mice severely impairs proteasome activity in several tissues, while depletion of IRS1 enhances proteasome function. Importantly, we show that FoxO1 directly binds on the promoter region of the rate-limiting catalytic β5 proteasome subunit to regulate its expression. In summary, this study reveals the direct role of FoxO factors in the regulation of proteasome function and provides new insight into how FoxOs affect proteostasis and, in turn, longevity.


2018 ◽  
Author(s):  
Razvan C. Stan ◽  
Katia S. Françoso ◽  
Rubens P.S. Alves ◽  
Luís Carlos S. Ferreira ◽  
Irene S. Soares ◽  
...  

AbstractFever is a regulated elevation in the body setpoint temperature and may arise as a result of infectious and noninfectious causes. While beneficial in modulating immune responses to infection, the potential of febrile temperatures in regulating antigen binding affinity to antibodies has not been explored. We have investigated this process under in vitro conditions using selected malaria or dengue antigens and specific monoclonal antibodies, and observed a marked increase in the affinity of these antibody-antigen complexes at 40°C, compared to physiological (37°C) or pathophysiological temperatures (42°C). Induced thermal equilibration of the protein partners at these temperatures, prior to measurements, further increased their binding affinity. These results may indicate an unexpected beneficial and adaptive role for fever in vivo, and highlight the positive role of thermal priming in enhancing protein-protein affinity for samples of scarce availability.


2021 ◽  
Vol 93 (5) ◽  
pp. 635-639
Author(s):  
Andrei V. Gordeev ◽  
Elena A. Galushko ◽  
Natalia M. Savushkina

The significant humoral effect of the renin-angiotensin-aldosterone system on the regulation of the cardiovascular system and blood pressure has long been widely known. However, the identification and interpretation of new components of renin-angiotensin-aldosterone system in recent years can significantly expand the range of its potential effects on the body. The anti-inflammatory effect of drugs that block angiotensin II and its receptors, including in rheumatic diseases, can become practically significant for General therapists by their effect on reducing the concentration of inflammatory mediators and angiogenesis processes. The organoprotective and anti-inflammatory potentials of drugs that reduce the production of at demonstrated in vitro and in vivo experiments allow us to consider them as first-line angiotropic agents in patients with rheumatoid arthritis, especially in the presence of pathology of the cardiovascular system and kidneys.


1923 ◽  
Vol 37 (4) ◽  
pp. 511-524 ◽  
Author(s):  
Elizabeth Pauline Wolf

1. None of the salts tested produce a marked inflammation in vivo in concentrations under 10 per cent. Potassium salts and the different citrates produced atypical inflammatory reactions in mice, but not in frogs. There was no true inflammation, however, characterized by blood vessel changes, migration of polymorphonuclear leucocytes and erythrocytes, and fluid exudation. 2. Synergistic action occurs when equal parts of strontium and magnesium salts are employed. There is a change in the appearance of the mesentery without a true inflammation, and this change does not occur with either salt alone. 3. Amino-acids and amines as a class do not produce inflammation, but histamine produces a marked inflammatory reaction in frogs and mice. 4. Tyramine does not cause an inflammatory reaction but has other marked effects; agglutination thrombi occur within the smaller blood vessels, both veins and arteries; in frogs there is a rapid clumping of the white blood cells followed by a true coagulation with strands of fibrin and entanglement of erythrocytes. This is very widespread and often kills the animal within an hour after injection. In mice it is the erythrocytes that clump and coagulation occurs very much later, usually at the end of 24 hours; still later there is complete absorption of the coagulated masses and the mesenteric circulation returns to normal. None of the mice died during the stage of clumping, and the clots never extended up the larger vessels as they did in the frogs. These effects are similar to the phenomena observed in the in vitro work, in which clumping of the cells appeared constantly. 5. Cantharidinum, histamine, and turpentine produced the most rapid and marked inflammation of any substances tried. These substances are all strongly positively chemotactic in vitro. The differences occurring when these substances are used in different species is a quantitative rather than a qualitative one, the body temperature being of some importance. Papain acted only in warmblooded animals; this is consistent with its chemotactic action in vitro. The degree of positive chemotaxis varied markedly with the blood employed and in the in vivo work the inflammation varied with the species of animal used. 6. Certain substances produced inflammation only some time after injection; this is true of scarlet R and croton oil in weak dilutions. These are not strongly positively chemotactic. 7. Parazol produces an inflammation associated with necrosis of the tissues. This is similar to the results obtained in vitro, parazol being positively chemotactic in low concentrations and negative in high concentrations. 8. The exact chemical nature of many of the substances which produce marked inflammation is unknown. This is true of cantharidin, and the active constituents of turpentine and croton oil. 9. All substances which produce marked and rapid inflammation on injection are positively chemotactic, but not all strongly positively chemotactic substances produce inflammation; i.e., calcium compounds, sodium phosphate, etc. 10. Only substances which are positively chemotactic and also soluble in oil seem capable of producing inflammation in animals.


2019 ◽  
Vol 7 (9) ◽  
pp. 279 ◽  
Author(s):  
Adrian Catinean ◽  
Maria Adriana Neag ◽  
Andrei Otto Mitre ◽  
Corina Ioana Bocsan ◽  
Anca Dana Buzoianu

In recent years, increased attention has been paid to the relationship between microbiota and various diseases, especially immune-mediated diseases. Because conventional therapy for many autoimmune diseases is limited both in efficacy and safety, there is an increased interest in identifying nutraceuticals, particularly probiotics, able to modulate the microbiota and ameliorate these diseases. In this review, we analyzed the research focused on the role of gut microbiota and skin in immunity, their role in immune-mediated skin diseases (IMSDs), and the beneficial effect of probiotics in patients with this pathology. We selected articles published between 2009 and 2019 in PubMed and ScienceDirect that provided information regarding microbiota, IMSDs and the role of probiotics in these diseases. We included results from different types of studies including observational and interventional clinical trials or in vivo and in vitro experimental studies. Our results showed that probiotics have a beneficial effect in changing the microbiota of patients with IMSDs; they also influence disease progression. Further studies are needed to better understand the impact of new therapies on intestinal microbiota. It is also important to determine whether the microbiota of patients with autoimmune diseases can be manipulated in order to restore homeostasis of the microbiota.


Sign in / Sign up

Export Citation Format

Share Document