Bicyclic 6 + 6 Systems: Advances in the Chemistry of Heterocyclic Compounds Incorporated Pyrimido[1,2-a]Pyrimidine Skeleton

2020 ◽  
Vol 17 (6) ◽  
pp. 717-739 ◽  
Author(s):  
Mohamed Monier ◽  
Doaa Abdel-Latif ◽  
Ahmed El-Mekabaty ◽  
Khaled M. Elattar

The present review has highlighted the chemistry of pyrimido[1,2-a]pyrimidine compounds as one of the most important classes of heterocyclic systems. The main sections include: (1) The synthesis of pyrimido[1,2-a]pyrimidines, (2) reactivity of the substituents attached to the carbon and nitrogen atoms of the ring and (3) biological applications. A discussion demonstrated that the proposed mechanisms of unexpected synthetic routes were intended. The purpose of this review is to provide an overview of the chemistry of pyrimido[1,2-a]pyrimidines to date, in which the compounds should be widely applied in medicinal and pharmaceutical chemistry based on the significant, variable and potent biological results of pyrimidopyrimidine and pyridopyrimidine analogs. This survey will assist scientists in the organic and medicinal chemistry fields to design and develop procedures for the construction of new standard biological compounds.

2020 ◽  
Vol 27 ◽  
Author(s):  
Cindy Patinote ◽  
Natalina Cirnat ◽  
Pierre-Antoine Bonnet ◽  
Carine Deleuze-Masquéfa

: Heterocyclic compounds hold a huge and recognized place in the field of medicinal chemistry thanks to their multiple biological activities. Their synthetic pathways allow their easy and rapid access due to different bond forming methodologies and provide a huge amount of multi-functionalized compounds for drug delivery. The syntheses of heterocyclic compounds are today well known for the majority, described and reviewed in an extensive literature. In this review, we choose to gather and classify available information concerning the biological activities of quinoxaline-based compounds annulated at bond a containing one and more nitrogen atoms in the fused azole ring.


2020 ◽  
Vol 24 (16) ◽  
pp. 1815-1852
Author(s):  
Rukhsana Tabassum ◽  
Muhammad Ashfaq ◽  
Hiroyuki Oku

The quinoline moiety is a privileged scaffold among heterocyclic compounds that is an important construction motif in the fields of pharmaceutical chemistry. Quinoline molecule possesses a variety of therapeutic activities like antiviral, antimalarial, antibacterial, antitumor, anticancer, antioxidant antihypertensive, antifungal, anthelmintic, cardiotonic, anticonvulsant and anti-inflammatory. This review provides an insight into recent development in transition metal free novel and modified conventional synthetic routes to yield a wide variety of substituted quinolines.


2020 ◽  
Vol 24 (17) ◽  
pp. 1943-1975
Author(s):  
Kamal M. Dawood ◽  
Thoraya A. Farghaly ◽  
Mohamed A. Raslan

Pyrazolo-oxazine fused systems are interesting classes of heterocyclic compounds exhibiting pronounced biological applications such as anticancer, antitubercular, anti-inflammatory, antibacterial and antifungal activities as well as inhibiting COX-1 and COX-2 enzymes. Depending on the distribution position of the heteroatoms (N and O), there are fourteen different systems of pyrazolo-oxazine. Nine of them were biologically abundant in literature, for example, pyrazolo[3,4-e][1,3]oxazines are used as analogs of antibiotics Formycin, Formycin B, Oxoformycin B. This review article summarizes the concerted efforts expended on most of the synthetic routes to the various types of pyrazolo-oxazines in the literature until the first quarter of 2020. The reactions of pyrazolo-oxazines with various reagents are also outlined.


Author(s):  
Adnan Cetin

: The heterocyclic compounds are the building blocks for synthesis of the different biological active compounds in the organic chemistry. Heterocyclic compounds have versatile synthetic applicability and biological activity. Pyrazole carboxylic acid derivatives are significant scaffold structures in heterocyclic compounds due to biologic activities such as antimicrobial, anticancer, inflammatory, antidepressant, antifungal anti-tubercular and antiviral etc. The aim of this mini-review is an overview synthesis of pyrazole carboxylic acid derivatives and their biologic applications. The summarized literature survey presents in detail biological activities of pyrazole carboxylic acid derivatives and their various synthetic methods. This mini-review can be guide to many scientists in medicinal chemistry.


2020 ◽  
Vol 11 (3) ◽  
pp. 3377-3383
Author(s):  
Arulmozhi R ◽  
Abirami N ◽  
Helen P Kavitha ◽  
Arulmurugan S ◽  
Vinoth Kumar J

The creation of novel drugs containing a tetrazole ring as a structural fragment has contributed considerably to the outstanding achievements of the pharmaceutical chemistry in the last decade. Tetrazoles are the heterocyclic compounds having diverse biological activities such as analgesic, antiinflammation, antimicrobial, anticancer, antidiabetic, etc., and an impending source in biosciences. In this paper, the authors describe the synthesis of novel tetrazoles from N, N-( 6-Phenyl-1,3,5-triazine-2,4-diyl) dibenzamide (PTDDB) and 2-phenyl-4, 6-di(2H-tetrazole-2-yl)-1,3,5-triazine(5a-i) were prepared per the proposed scheme. A new class of tetrazole heterocycles were synthesised and characterised. I n vivo analysis was carried out on the analgesic property of synthesised tetrazole derivatives (5a, 5b, 5c). Characterisation studies such as IR, 1H NMR, 13C NMR, Mass and elemental analysis were performed for the synthesised tetrazole derivatives. Some of the tetrazole derivatives 5a, 5b, and 5c were tested for anodyne activity using morphine as the standard drug. The data reveals that all the three compounds 5a, 5b and 5c taken for the study show analgesic activity by hot plate method and tail flick methods. Among tested compounds, compound 5c is found to have potent analgesic (anodyne) activity. The results of the study indicate that the sample taken for the study show fairly good business using morphine as the standard drug.


Author(s):  
Shukla PK ◽  
Singh MP ◽  
Patel R

Indole and its derivatives have engaged a unique place in the chemistry of nitrogen heterocyclic compounds. The recognition of the plant growthhormone, heteroauxin, the significant amino acids, tryptamine & tryptophan and anti-inflammatory drug, indomethacine are the imperativederivatives of indole which have added stimulus to this review work. Isatin (1H-indole-2,3-dione), an indole derivative of plant origin. Althoughit is a naturally occurring compound, but was synthesized by Erdmann and Laurent in 1840 before it was found in nature. Isatin is a versatileprecursor for many biologically active molecules and its diversified nature makes it a versatile substrate for further modifications. It is concernedin many pharmacological activities like anti-malarial, antiviral, anti-allergic, antimicrobial etc; isatin and its derivatives have been also found todemonstrate promising outcomes against various cancer cell lines. This review provides a brief overview on the recent advances and futureperspectives on chemistry and biological aspects of isatin and its derivatives reported in the recent past.


2020 ◽  
Vol 27 (40) ◽  
pp. 6864-6887 ◽  
Author(s):  
Mohd Adil Shareef ◽  
Irfan Khan ◽  
Bathini Nagendra Babu ◽  
Ahmed Kamal

Background:: Imidazo[2,1-b]thiazole, a well-known fused five-membered hetrocycle is one of the most promising and versatile moieties in the area of medicinal chemistry. Derivatives of imidazo[2,1-b]thiazole have been investigated for the development of new derivatives that exhibit diverse pharmacological activities. This fused heterocycle is also a part of a number of therapeutic agents. Objective:: To review the extensive pharmacological activities of imidazo[2,1-b]thiazole derivatives and the new molecules developed between 2000-2018 and their usefulness. Method:: Thorough literature review of all relevant papers and patents was conducted. Conclusion:: The present review, covering a number of aspects, is expected to provide useful insights in the design of imidazo[2,1-b]thiazole-based compounds and would inspire the medicinal chemists for a comprehensive and target-oriented information to achieve a major breakthrough in the development of clinically viable candidates.


2020 ◽  
Vol 24 (5) ◽  
pp. 473-486 ◽  
Author(s):  
Ligia S. da Silveira Pinto ◽  
Thatyana R. Alves Vasconcelos ◽  
Claudia Regina B. Gomes ◽  
Marcus Vinícius N. de Souza

Azetidin-2-ones (β-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.


2019 ◽  
Vol 23 (8) ◽  
pp. 860-900 ◽  
Author(s):  
Chander P. Kaushik ◽  
Jyoti Sangwan ◽  
Raj Luxmi ◽  
Krishan Kumar ◽  
Ashima Pahwa

N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.


Author(s):  
Ravinder Sharma ◽  
Pooja A. Chawla ◽  
Viney Chawla ◽  
Rajeev Verma ◽  
Nandita Nawal ◽  
...  

Abstract: A sizeable proportion of currently marketed drugs come from heterocycles. The heterocyclic moiety 5-pyrazolone is well known five membered ring containing nitrogen. Derivatives of this wonder nucleus have exhibited activities as diverse as antimicrobial, anti-inflammatory, analgesic, antidepressant, anticonvulsant, antidiabetic, antihyperlipidemic, antiviral, antitubercular, antioxidant, anticancer and antiviral including action against severe acute respiratory syndrome (SARS) or 3C protease inhibitor. A number of drugs based on this motif have already made it to the market. Standard texts and literature on medicinal chemistry cite different approaches for the synthesis of 5-pyrazolones. The present review provides an insight view to 5-pyrazolone synthesis, their biological profile and structure activity relationship studies.


Sign in / Sign up

Export Citation Format

Share Document