Fused azolo-quinoxalines: Candidates for Medicinal Chemistry. A review of their biological applications

2020 ◽  
Vol 27 ◽  
Author(s):  
Cindy Patinote ◽  
Natalina Cirnat ◽  
Pierre-Antoine Bonnet ◽  
Carine Deleuze-Masquéfa

: Heterocyclic compounds hold a huge and recognized place in the field of medicinal chemistry thanks to their multiple biological activities. Their synthetic pathways allow their easy and rapid access due to different bond forming methodologies and provide a huge amount of multi-functionalized compounds for drug delivery. The syntheses of heterocyclic compounds are today well known for the majority, described and reviewed in an extensive literature. In this review, we choose to gather and classify available information concerning the biological activities of quinoxaline-based compounds annulated at bond a containing one and more nitrogen atoms in the fused azole ring.

Author(s):  
Adnan Cetin

: The heterocyclic compounds are the building blocks for synthesis of the different biological active compounds in the organic chemistry. Heterocyclic compounds have versatile synthetic applicability and biological activity. Pyrazole carboxylic acid derivatives are significant scaffold structures in heterocyclic compounds due to biologic activities such as antimicrobial, anticancer, inflammatory, antidepressant, antifungal anti-tubercular and antiviral etc. The aim of this mini-review is an overview synthesis of pyrazole carboxylic acid derivatives and their biologic applications. The summarized literature survey presents in detail biological activities of pyrazole carboxylic acid derivatives and their various synthetic methods. This mini-review can be guide to many scientists in medicinal chemistry.


2016 ◽  
Vol 5 (5) ◽  
pp. 568-588
Author(s):  
Mohammad Asif

Thiadiazoles are an important class of heterocyclic compounds that exhibit diverse applications in organic synthesis, pharmaceutical and biological applications. They are also useful as oxidation inhibitors, cyanine dyes, metal chelating agents, anti-corrosion agents. Researchers across the globe are working on this moiety due to their broad spectrum of applications of thiadiazole chemistry. This article provides information about developments, exploration, synthetic strategies, techniques for the synthesis of thiadiazoles and their diverse biological activities, structure-activity relationship of the compounds and physical properties. This article is an important tool for organic and medicinal chemists to develop newer thiadiazole compounds that could be better agents in terms of efficacy and safety.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3036
Author(s):  
Ashraf A. Aly ◽  
Alaa A. Hassan ◽  
Maysa M. Makhlouf ◽  
Stefan Bräse

Mercapto-substituted 1,2,4-triazoles are very interesting compounds as they play an important role in chemopreventive and chemotherapeutic effects on cancer. In recent decades, literature has been enriched with sulfur- and nitrogen-containing heterocycles which are used as a basic nucleus of different heterocyclic compounds with various biological applications in medicine and also occupy a huge part of natural products. Therefore, we shed, herein, more light on the synthesis of this interesting class and its application as a biologically active moiety. They might also be suitable as antiviral and anti-infective drugs.


Author(s):  
Lucas F. E. Moor ◽  
Thatyana R. A. Vasconcelos ◽  
Raisa da R. Reis ◽  
Ligia S. S. Pinto ◽  
Thamires M. da Costa

: Quinoline and its derivatives comprise an important group of heterocyclic compounds that exhibits a wide range of pharmacological properties such as antibacterial, antiviral, anticancer, antiparasitic, anti-Alzheimer and anticholesterol. In fact, the quinoline nucleus is found in the structure of many drugs and in rational design in medicinal chemistry for the discovery of novel bioactive molecules. Persistent efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. This review highlights some discoveries on the development of quinoline-based compounds in recent years (2013-2019) focusing on their biological activities, including anticancer, antitubercular, antimalarial, anti-ZIKV, anti-DENV, anti-Leishmania and anti-Alzheimer’s disease.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1909 ◽  
Author(s):  
Nagaraju Kerru ◽  
Lalitha Gummidi ◽  
Suresh Maddila ◽  
Kranthi Kumar Gangu ◽  
Sreekantha B. Jonnalagadda

The analogs of nitrogen-based heterocycles occupy an exclusive position as a valuable source of therapeutic agents in medicinal chemistry. More than 75% of drugs approved by the FDA and currently available in the market are nitrogen-containing heterocyclic moieties. In the forthcoming decade, a much greater share of new nitrogen-based pharmaceuticals is anticipated. Many new nitrogen-based heterocycles have been designed. The number of novel N-heterocyclic moieties with significant physiological properties and promising applications in medicinal chemistry is ever-growing. In this review, we consolidate the recent advances on novel nitrogen-containing heterocycles and their distinct biological activities, reported over the past one year (2019 to early 2020). This review highlights the trends in the use of nitrogen-based moieties in drug design and the development of different potent and competent candidates against various diseases.


2021 ◽  
Vol 9 (08) ◽  
pp. 989-1004
Author(s):  
Shailendra Yadav ◽  
◽  
Sushma Singh ◽  
Chitrasen Gupta ◽  
◽  
...  

Heterocyclic compounds are numerous and diverse group of organic compounds. Heterocycles are abundantly found in nature and express various physiological properties. Heterocycles are intricately linked to all aspects of life. There are many heterocyclic compounds currently known, and the number is constantly rising owing to extensive synthetic development and their applications. Heterocyclic compounds are used significantly in a number of areas, including biochemistry and medicinal chemistry, and some others. They are predominantly synthesized in agrochemical and pharmaceutical industries due to their potential biological activities. This review article focuses on recently synthesized heterocyclic compounds and their different pesticidal activities such as antifungal, antibacterial, antiviral, nematocidal, insecticidal, acaricidal, and herbicidal.


2019 ◽  
Author(s):  
Chem Int

Various heterocyclic compounds along their derivatives were evaluated for their biological activities as antiviral, antitumor, anticonvulsant, antibacterial, antifungal, antituberculosis, analgesic, anti-inflammatory, antidiabetic, antihistamine and other biological activities. The triazole moiety seems to be very small, but in the biological profile has attracted the attention of many researchers to explore this skeleton to its multiple potential against several activities. The triazole derivatives possess a great importance in medicinal chemistry and can be used for the synthesis of numerous heterocyclic compounds with different biological activities. This review article covers the information of triazoles derivatives having different psychopharmacological actions. Thus triazole acts as a promising medicinal agent for the scientists working over this field. This review can be helpful to develop various more new compounds possessing triazoles moiety that could be better in terms of efficacy and lesser toxicity.


2020 ◽  
Vol 17 (6) ◽  
pp. 717-739 ◽  
Author(s):  
Mohamed Monier ◽  
Doaa Abdel-Latif ◽  
Ahmed El-Mekabaty ◽  
Khaled M. Elattar

The present review has highlighted the chemistry of pyrimido[1,2-a]pyrimidine compounds as one of the most important classes of heterocyclic systems. The main sections include: (1) The synthesis of pyrimido[1,2-a]pyrimidines, (2) reactivity of the substituents attached to the carbon and nitrogen atoms of the ring and (3) biological applications. A discussion demonstrated that the proposed mechanisms of unexpected synthetic routes were intended. The purpose of this review is to provide an overview of the chemistry of pyrimido[1,2-a]pyrimidines to date, in which the compounds should be widely applied in medicinal and pharmaceutical chemistry based on the significant, variable and potent biological results of pyrimidopyrimidine and pyridopyrimidine analogs. This survey will assist scientists in the organic and medicinal chemistry fields to design and develop procedures for the construction of new standard biological compounds.


Author(s):  
Monica Dinodia

Abstract: Nitrogen based heterocycles display an impressive repertoire of biological activities, including antioxidant, antimicrobial, anti-tuberculosis, analgesic, anti-inflammatory, anti-viral, anti-HIV, anti-cancer, anti-helminthic, and other pharmacological activities. Numerous novel nitrogen-based heterocycles have been synthesized, which showed various physiological properties, and their application in medicinal chemistry is ever-growing. The present review will provide an in-depth view of N-heterocyclic compounds that showed biological activities in the last 5 years (2017-2021). This review article will be helpful for the structural design of effective and sustainable N-heterocyclic drugs against diseases with minimal side effects.


2021 ◽  
Vol 5 (4) ◽  
pp. 73
Author(s):  
Ram Karan ◽  
Pooja Agarwal ◽  
Mukty Sinha ◽  
Neelima Mahato

This paper intended to explore and discover recent therapeutic agents in the area of medicinal chemistry for the treatment of various diseases. Heterocyclic compounds represent an important group of biologically active compounds. In the last few years, heterocyclic compounds having quinazoline moiety have drawn immense attention owing to their significant biological activities. A diverse range of molecules having quinazoline moiety are reported to show a broad range of medicinal activities like antifungal, antiviral, antidiabetic, anticancer, anti-inflammatory, antibacterial, antioxidant and other activities. This study accelerates the designing process to generate a greater number of biologically active candidates.


Sign in / Sign up

Export Citation Format

Share Document