Revealing the Synergistic Mechanism of Multiple Components in Compound Fengshiding Capsule for Rheumatoid Arthritis Therapeutics by Network Pharmacology

2019 ◽  
Vol 19 (4) ◽  
pp. 303-314 ◽  
Author(s):  
Hong Duan ◽  
Ke-feng Zhai ◽  
Ghulam J. Khan ◽  
Jie Zhou ◽  
Ting-yan Cao ◽  
...  

Background:Compound Fengshiding capsule (CFC), is a Chinese formulation from herbal origin including Alangium platanifolium, Angelicae dahurica, Cynanchum paniculatum and Glycyrrhiza uralensis. CFC is widely used as clinical therapy against rheumatoid arthritis. However, its exact mechanism of action has not been explored yet.Methods:In order to explore the synergistic mechanism of CFC, we designed a study adopting network pharmacology scheme to screen the action targets in relation to the CFC components. The study analyses target facts of salicin, paeonol, liquiritin and imperatorin from PubMed database, and explores the potential pharmacological targets of rheumatoid arthritis, cervical neuralgia and sciatica related diseases for their interaction.Results:The results of boosted metabolic pathway showed that the chemical components of CFC interrupted many immune-related pathways, thus participating in immunity regulation of the body and playing a role in the treatment of rheumatism. Collectively, CFC has apoptotic, oxidative stress modulatory and anti-inflammatory effects that accumulatively serve for its clinical application against rheumatoid arthritis.Conclusion:Conclusively, our findings from present study reconnoiters and compacts systematic theoretical approach by utilizing the network pharmacology mechanism of four effective components for the treatment of rheumatism indicating sufficient potential drug targets associated with CFC against rheumatism. These interesting findings entreaties for further in vitro and in vivo studies on the mechanism of compound active ingredient against rheumatism.

2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2014 ◽  
Vol 42 (05) ◽  
pp. 1071-1098 ◽  
Author(s):  
Mao-Xing Li ◽  
Xi-Rui He ◽  
Rui Tao ◽  
Xinyuan Cao

In the present review, the literature data on the chemical constituents and biological investigations of the genus Pedicularis are summarized. Some species of Pedicularis have been widely applied in traditional Chinese medicine. A wide range of chemical components including iridoid glycosides, phenylpropanoid glycosides (PhGs), lignans glycosides, flavonoids, alkaloids and other compounds have been isolated and identified from the genus Pedicularis. In vitro and in vivo studies indicated some monomer compounds and extracts from the genus Pedicularis have been found to possess antitumor, hepatoprotective, anti-oxidative, antihaemolysis, antibacterial activity, fatigue relief of skeletal muscle, nootropic effect and other activities.


Author(s):  
Anjali P ◽  
Vimalavathini R

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which mainly targets synovial membrane during its disease pathogenesis. Available therapeutic drugs for the treatment of RA provide only symptomatic relief and are associated with severe side effects. Herbal plants comprise many active biological compounds that cure the disease with minimal adverse effects. Pyrenacantha volubilis is a climber and member of Icacinaceae family. Gas chromatography- mass spectrometry (GC-MS) analysis of ethanolic extracts of leaves of Pyrenacantha volubilis (EEPV) reveals the presence of 2-isopropyl-5-methylcyclohexyl 3-(1-(4- chlorophenyl)-3-oxobutyl)-coumarin-4-yl carbonate and 1-naphthalenepropanol, alpha-ethyldecahydro-5- (hydroxymethyl)-alpha,5,8A-trimethyl-2-methyl phytoconstitutents. Hence these compounds were docked with various pathological mediators of RA using Autodock 4.2. The docking results unveils that these compounds had better binding energy against inflammatory, oxidative stress and receptor for advanced glycation end products (RAGE) mediators that plays a pivotal role in the progression of RA. However, this study warrants further in- vitro and in-vivo studies to be carried out to establish the anti-inflammatory and anti-arthritic activity of selected phytoconstitutents.


2020 ◽  
Author(s):  
Kui Wu ◽  
Nathan Yee ◽  
Sangeetha Srinivasan ◽  
Amir Mahmoodi ◽  
Michael Zakharian ◽  
...  

<div> <div> <div> <p>A desired goal of targeted cancer treatments is to achieve high tumor specificity with minimal side effects. Despite recent advances, this remains difficult to achieve in practice as most approaches rely on biomarkers or physiological differences between malignant and healthy tissue, and thus benefit only a subset of patients in need of treatment. To address this unmet need, we introduced a Click Activated Protodrugs Against Cancer (CAPAC) platform that enables targeted activation of drugs at a specific site in the body, i.e., a tumor. In contrast to antibodies (mAbs, ADCs) and other targeted approaches, the mechanism of action is based on in vivo click chemistry, and is thus independent of tumor biomarker expression or factors such as enzymatic activity, pH, or oxygen levels. The platform consists of a tetrazine-modified sodium hyaluronate-based biopolymer injected at a tumor site, followed by one or more doses of a trans-cyclooctene (TCO)- modified cytotoxic protodrug with attenuated activity administered systemically. The protodrug is captured locally by the biopolymer through an inverse electron-demand Diels-Alder reaction between tetrazine and TCO, followed by conversion to the active drug directly at the tumor site, thereby overcoming the systemic limitations of conventional chemotherapy or the need for specific biomarkers of traditional targeted therapy. Here, TCO-modified protodrugs of four prominent cytotoxics (doxorubicin, paclitaxel, etoposide and gemcitabine) are used, highlighting the modularity of the CAPAC platform. In vitro evaluation of cytotoxicity, solubility, stability and activation rendered the protodrug of doxorubicin, SQP33, as the most promising candidate for in vivo studies. Studies in rodents show that a single injection of the tetrazine-modified biopolymer, SQL70, efficiently captures SQP33 protodrug doses given at 10.8-times the maximum tolerated dose of conventional doxorubicin with greatly reduced systemic toxicity. </p> </div> </div> </div>


Author(s):  
Aloisio Cunha de Carvalho ◽  
Leoni Villano Bonamin

Background: Several reviews about phytotherapy and homeopathy have been published in the last years, including Viscum album (VA.L). VA is a parasite plant whose extract has anti-cancer proprieties and is used alone or in combination with conventional chemotherapy. Methods: We performed a systematic review about the in vivo and in vitro models described in the literature, including veterinary clinical trials. The literature was consulted from Pubmed database. Results: There are several kinds of pharmaceutical preparations about VA and their active principles used in experimental studies, lectin being frequently studied (alone or as an extract compound). More than 50% of available literature about VA is related to the lectin effects. On the other hand, the effects of viscotoxins are less studied. Among the in vivo experimental studies about VA and its compounds, the B16 murine melanoma is the most used model, followed by Ehrlich, Walker and Dalton tumors. The results point to the apoptotic effects, metastasis control and tumor regression. Some veterinary clinical studies about the use of VA in the treatment of sarcoid, fibrosarcoma and neuroblastoma are quoted in literature too, with interesting results. Considering the in vitro models, our review revealed that NALM6 leukemia cells, B16 melanoma and NC1-H460 lung carcinoma were the most studied tumor models, apoptosis signals being the most important findings. Only one study verified immunoglobulin and interleukin production. All consulted papers were related to phytotherapy preparations only. Conclusions: Although the literature about the anti-cancer activity of VA extract and its lectins is enough, there is a marked lack of information about viscotoxin activities and about the effects of homeopathic preparations of this plant on animal tumors and on in vitro cultivated tumor cells.


2018 ◽  
Vol 25 (36) ◽  
pp. 4740-4757 ◽  
Author(s):  
Ashita Sharma ◽  
Mandeep Kaur ◽  
Jatinder Kaur Katnoria ◽  
Avinash Kaur Nagpal

Polyphenols are a group of water-soluble organic compounds, mainly of natural origin. The compounds having about 5-7 aromatic rings and more than 12 phenolic hydroxyl groups are classified as polyphenols. These are the antioxidants which protect the body from oxidative damage. In plants, they are the secondary metabolites produced as a defense mechanism against stress factors. Antioxidant property of polyphenols is suggested to provide protection against many diseases associated with reactive oxygen species (ROS), including cancer. Various studies carried out across the world have suggested that polyphenols can inhibit the tumor generation, induce apoptosis in cancer cells and interfere in progression of tumors. This group of wonder compounds is present in surplus in natural plants and food products. Intake of polyphenols through diet can scavenge ROS and thus can help in cancer prevention. The plant derived products can also be used along with conventional chemotherapy to enhance the chemopreventive effects. The present review focuses on various in vitro and in vivo studies carried out to assess the anti-carcinogenic potential of polyphenols present in our food. Also, the pathways involved in cancer chemopreventive effects of various subclasses (flavonoids, lignans, stilbenes and phenolic acids) of polyphenols are discussed.


Nanomedicine ◽  
2019 ◽  
Vol 14 (16) ◽  
pp. 2169-2187 ◽  
Author(s):  
Ting Gong ◽  
Pei Zhang ◽  
Caifeng Deng ◽  
Yu Xiao ◽  
Tao Gong ◽  
...  

Aim: We aimed to construct human serum albumin-Kolliphor® HS 15 nanoparticles (HSA-HS15 NPs) to overcome the limitations in targeted therapy for rheumatoid arthritis (RA) and enhance the safety of drug-loaded HSA NPs. Methodology: Celastrol (CLT)-loaded HSA-HS15 NPs were prepared and the properties were adequately investigated; the treatment effect were evaluated in RA rats; in vitro and in vivo studies were performed to explain the mechanism. Results: CLT-HSA-HS15 NPs had remarkable treatment ability and enhanced safety in the treatment of RA compared with free CLT and CLT-HSA NPs. Conclusion: HSA-HS15 NPs could be a safe and efficient therapeutic strategy for the treatment of RA, because of the inflammatory targeting ability of albumin, the added HS15 and ELVIS effect (extravasation through leaky vasculature followed by inflammatory cell-mediated sequestration) of nanoparticles.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xinyi Lu ◽  
Xingli Wu ◽  
Lin Jing ◽  
Lingjia Tao ◽  
Yingxuan Zhang ◽  
...  

Objective. To analyze the active compounds, potential targets, and diseases of JianPi Fu Recipe (JPFR) based on network pharmacology and bioinformatics and verify the potential biological function and mechanism of JPFR in vitro and in vivo. Methods. Network pharmacology databases including TCMSP, TCM-PTD, TCMID, and DrugBank were used to screen the active compounds and potential drug targets of JPFR. Cytoscape 3.7 software was applied to construct the interaction network between active compounds and potential targets. The DAVID online database analysis was performed to investigate the potential effective diseases and involved signaling pathways according to the results of the GO function and KEGG pathways enrichment analysis. To ensure standardization and maintain interbatch reliability of JPFR, High Performance Liquid Chromatography (HPLC) was used to establish a “chemical fingerprint.” For biological function validation, the effect of JPFR on the proliferation and migration of CRC cells in vitro was investigated by CCK-8 and transwell and wound healing assay, and the effect of JPFR on the growth and metastasis of CRC cells in vivo was detected by building a lung metastasis model in nude mice and in vivo imaging. For the potential mechanism validation, the expressions of MALAT1, PTBP-2, and β-catenin in CRC cells and transplanted CRC tumors were detected by real-time PCR, western blot, and immunohistochemical staining analysis. Results. According to the rules of oral bioavailability (OB) > 30% and drug-likeness (DL) > 0.18, 244 effective compounds in JPFR were screened out, as well as the corresponding 132 potential drug targets. By the analysis of DAVID database, all these key targets were associated closely with the cancer diseases such as prostate cancer, colorectal cancer, bladder cancer, small cell lung cancer, pancreatic cancer, and hepatocellular carcinoma. In addition, multiple signaling pathways were closely related to JPFR, including p53, Wnt, PI3K-Akt, IL-17, HIF-1, p38-MAPK, NF-κB, PD-L1 expression and PD-1 checkpoint pathway, VEGF, JAK-STAT, and Hippo. The systematical analysis showed that various active compounds of JPFR were closely connected with Wnt/β-catenin, EGFR, HIF-1, TGFβ/Smads, and IL6-STAT3 signaling pathway, including kaempferol, isorhamnetin, calycosin, quercetin, medicarpin, phaseol, spinasterol, hederagenin, beta-sitosterol, wighteone, luteolin, and isotrifoliol. For in vitro experiments, the migration and growth of human CRC cells were inhibited by the JPFR extract in a dose-dependent way, and the expression of MALAT1, PTBP-2, β-catenin, MMP7, c-Myc, and Cyclin D1 in CRC cells were downregulated by the JPFR extract in a dose-dependent way. For in vivo metastasis experiments, the numbers of lung metastasis were found to be decreased by the JPFR extract in a dose-dependent manner, and the expressions of metastasis-associated genes including MALAT1, PTBP-2, β-catenin, and MMP7 in the lung metastases were downregulated dose dependently by the JPFR extract. For the orthotopic transplanted tumor experiments, the JPFR extract could inhibit the growth of orthotopic transplanted tumors and downregulate the expression of c-Myc and Cyclin D1 in a dose-dependent manner. Moreover, the JPFR extract could prolong the survival time of tumor-bearing mice in a dose-dependent manner. Conclusions. Through effective network pharmacology analysis, we found that JPFR contains many effective compounds which may directly target cancer-associated signaling pathways. The in vitro and in vivo experiments further confirmed that JPFR could inhibit the growth and metastasis of CRC cells by regulating β-catenin signaling-associated genes or proteins.


2017 ◽  
Vol 13 (4) ◽  
pp. 241 ◽  
Author(s):  
Maryam Zahmatkesh, PhD ◽  
Mehri Kadkhodaee, PharmD, PhD ◽  
Ali Salarian, MD, PhD student ◽  
Behjat Seifi, PhD ◽  
Soheila Adeli, PhD

Background: Opioids produce reactive oxygen species (ROS) which are highly reactive molecules that damage cells and tissues, and are suggested to contribute to the opioid use disorders. Thus, antioxidant supplementation might improve the disturbance in redox (oxidation-reduction) homeostasis. However, randomized trials on antioxidant therapy have not shown beneficial effects.Objectives: The purpose of this review is to shed lights on the oxidative changes resulting from opioid use and to highlight the unanswered questions regarding oxidative profile in an effort to provide a comprehensive view of different aspects of an efficient antioxidant therapy in clinical settings.Methods: The studies were identified and gathered from the PubMed database over the past 16 years (2000-2016). Our search results were limited to articles in English, both animals and human and in vitro and in vivo studies. A total of 50 full text articles were reviewed and summarized.Results: Opioids elevate the level of ROS and decrease the function of enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase. They increase the risk of vitamin deficiency and modify gene expression of target cells through ROS production. The effects of opioids on their target cells are exerted through different way and various mechanisms.Conclusion: Opioids modulate the redox homeostasis; therefore, understanding the profile of oxidative changes in individuals with opioid use disorder could be of significant benefits in the clinical setting, to help with selection of an efficient antioxidant therapy and diminishing oxidative damage.


2013 ◽  
Vol 59 (12) ◽  
pp. 1708-1721 ◽  
Author(s):  
Emma Raitoharju ◽  
Niku Oksala ◽  
Terho Lehtimäki

BACKGROUND MicroRNAs (miRNA, miR) are noncoding RNAs that regulate gene expression by hindering translation. miRNA expression profiles have been shown to differ in vivo and in vitro in many cellular processes associated with cardiovascular diseases (CVDs). The progression of CVDs has also been shown to alter the blood miRNA profile in humans. CONTENT We summarize the results of animal and cell experiments concerning the miRNA profile in the atherosclerotic process and the changes which occur in the blood miRNA profile of individuals with CVD. We also survey the relationship of these CVD-related miRNAs and their expression in the human advanced atherosclerotic plaque, thereby providing more insight into miRNA function in human atherosclerotic lesions. The miRNAs miR-126, -134, -145, -146a, -198, -210, -340*, and -92a were found to be expressed differently in the blood of individuals affected and unaffected by CVD. These differences paralleled those seen in tissue comparisons of miRNA expression in advanced atherosclerotic plaques and healthy arteries. Furthermore, several miRNAs associated with atherosclerosis in in vitro studies (such as miR-10a, -126, -145, -146a/b, -185, -210, and -326) were expressed in plaques in a similar pattern as was predicted by the in vitro experiments. The clinical implications of miRNAs in atherosclerosis as biomarkers and as possible drug targets are also reviewed. SUMMARY miRNA profiles in in vitro and in vivo studies as well as in human peripheral blood are quite representative of the miRNA expression in human atherosclerotic plaques. miRNAs appear promising in terms of future clinical applications.


Sign in / Sign up

Export Citation Format

Share Document